Publication

Multimodal graph theoretical analysis of functional brain connectivity using adaptive two-step strategy

Résumé

Recently, we proposed a two-step adaptive strategy for the statistical analysis of brain connectivity that is based on a first screening at the subnetwork level and a filtering at the connection/node level. The method was shown to guarantee strong control of type-I error through rigourous statistical proofs. In addition, the gain of power obtained by this method is considerable especially with an appropriate decomposition of the global network. Here, we discuss the extension of the two-step methods to multivariate statistics and we compare its performance against both standard methods and univariate two-step methods. We present as well a practical example of detecting topological nodal differences between functional connectivity matrices of resting state and movie-watching, respectively.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.