Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper presents a numerical study on wave transmission across jointed rock masses with UDEC, where multiple intersecting joint sets exist. The capability of UDEC of studying wave transmission across rock joints is validated through comparison with analytical solutions and experimental data. Through parametric studies on wave transmission across jointed rock masses, it is found that joint mechanical and spatial parameters including joint normal and shear stiffnesses, nondimensional joint spacing, joint spacing ratio, joint intersecting angle, incident angle, and number of joint sets together determine the wave transmission. And for P wave incidence, compared with other parameters, joint normal stiffness, nondimensional joint spacing, and joint intersecting angle have more significant effects on wave transmission. The physical reasons lying behind those phenomena are explained in detail. Engineering applications and indications of the modeling results are also mentioned.
Jan Sickmann Hesthaven, Hermes Sampedro Llopis