Syllable-based Pitch Encoding for Low Bit Rate Speech Coding with Recognition/Synthesis Architecture
Publications associées (52)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Phonological features extracted by neural network have shown interesting potential for low bit rate speech vocoding. The span of phonological features is wider than the span of phonetic features, and thus fewer frames need to be transmitted. Moreover, the ...
Prosody plays an important role in both identification and synthesis of emotionalized speech. Prosodic features like pitch are usually estimated and altered at a segmental level based on short windows of speech (where the signal is expected to be quasi-sta ...
Current very low bit rate speech coders are, due to complexity limitations, designed to work off-line. This paper investigates incremental speech coding that operates real-time and incrementally (i.e., encoded speech depends only on already-uttered speech ...
We describe a continuous-pitch parametric vocoder suitable for speech coding and statistical text to speech synthesis. The spectral model is based on linear prediction. We show that glottal modelling techniques from recent literature can be cherry-picked t ...
Current very low bit rate speech coders are, due to complexity limitations, designed to work off-line. This paper investigates incremental speech coding that operates real-time and incrementally (i.e., encoded speech depends only on already-uttered speech ...
State-of-the-art phoneme sequence recognition systems are based on hybrid hidden Markov model/artificial neural networks (HMM/ANN) framework. In this framework, the local classifier, ANN, is typically trained using Viterbi expectation-maximization algorith ...
In this paper, we propose a platform based on phonological speech vocoding for examining relations between phonology and speech processing, and in broader terms, between the abstract and physical structures of speech signal. The goal of this paper is to go ...
Automatic speech recognition (ASR) systems, through use of the phoneme as an intermediary unit representation, split the problem of modeling the relationship between the written form, i.e., the text and the acoustic speech signal into two disjoint processe ...
There is growing interest in using graphemes as subword units, especially in the context of the rapid development of hidden Markov model (HMM) based automatic speech recognition (ASR) system, as it eliminates the need to build a phoneme pronunciation lexic ...
There is growing interest in using graphemes as subword units, especially in the context of the rapid development of hidden Markov model (HMM) based automatic speech recognition (ASR) system, as it eliminates the need to build a phoneme pronunciation lexic ...