OM-2: An Online Multi-class Multi-kernel Learning Algorithm
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We propose a novel approach to efficiently select informative samples for large-scale learning. Instead of directly feeding a learning algorithm with a very large amount of samples, as it is usually done to reach state-of-the-art performance, we have devel ...
In this thesis, we explore the use of machine learning techniques for information retrieval. More specifically, we focus on ad-hoc retrieval, which is concerned with searching large corpora to identify the documents relevant to user queries. This identific ...
In this thesis, we explore the use of machine learning techniques for information retrieval. More specifically, we focus on ad-hoc retrieval, which is concerned with searching large corpora to identify the documents relevant to user queries. This identific ...
Learning motion control as a unified process of designing the reference trajectory and the controller is one of the most challenging problems in robotics. The complexity of the problem prevents most of the existing optimization algorithms from giving satis ...
Object classification and detection aim at recognizing and localizing objects in real-world images. They are fundamental computer vision problems and a prerequisite for full scene understanding. Their difficulty lies in the large number of possible object ...
Programme doctoral en Informatique, Communications et Information2013
The vast majority of transfer learning methods proposed in the visual recognition domain over the last years ad- dresses the problem of object category detection, assuming a strong control over the priors from which transfer is done. This is a strict condi ...
We propose an online learning algorithm to tackle the problem of learning under limited computational resources in a teacher-student scenario, over multiple visual cues. For each separate cue, we train an online learning algorithm that sacrifices performan ...
This paper considers the issues of efficiency and autonomy that are required to make reinforcement learning suitable for real-life control tasks. A real-time reinforcement learning algorithm is presented that repeatedly adjusts the control policy with the ...
Efficient learning from massive amounts of information is a hot topic in computer vision. Available training sets contain many examples with several visual descriptors, a setting in which current batch approaches are typically slow and does not scale well. ...
The vast majority of transfer learning methods proposed in the visual recognition domain over the last years ad- dresses the problem of object category detection, assuming a strong control over the priors from which transfer is done. This is a strict condi ...