Improving Articulatory Feature and Phoneme Recognition using Multitask Learning
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this ...
We investigate the detection of spoken terms in conversational speech using phoneme recognition with the objective of achieving smaller index size as well as faster search speed. Speech is processed and indexed as a sequence of one best phoneme sequence. W ...
We investigate the detection of spoken terms in conversational speech using phoneme recognition with the objective of achieving smaller index size as well as faster search speed. Speech is processed and indexed as a sequence of one best phoneme sequence. W ...
This paper presents our approach for automatic speech recognition (ASR) of overlapping speech. Our system consists of two principal components: a speech separation component and a feature estmation component. In the speech separation phase, we first estima ...
Confusion matrices and truncation experiments have long been a part of psychoacoustic experimentation. However confusion matrices are seldom used to analyze truncation experiments. A truncation experiment was conducted and the confusion patterns were analy ...
In this letter, a new feature extraction technique based on modulation spectrum derived from syllable-length segments of sub-band temporal envelopes is proposed. These sub-band envelopes are derived from auto-regressive modelling of Hilbert envelopes of th ...
2008
, ,
This paper investigates a multilayer perceptron (MLP) based acoustic feature mapping to extract robust features for automatic speech recognition (ASR) of overlapping speech. The MLP is trained to learn the mapping from log mel filter bank energies (MFBEs) ...
IDIAP2007
, ,
In this paper, a new feature extraction technique based on modulation spectrum derived from syllable-length segments of sub-band temporal envelopes is proposed. These sub-band envelopes are derived from auto-regressive modelling of Hilbert envelopes of the ...
The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this ...
Standard hidden Markov model (HMM) based automatic speech recognition (ASR) systems usually use cepstral features as acoustic observation and phonemes as subword units. Speech signal exhibits wide range of variability such as, due to environmental variatio ...