Couche sessionLa couche session est la du modèle OSI. Les deux services originaux de la couche session sont la synchronisation des communications (n'importe quel intervenant peut émettre à tout moment) et la gestion des « transactions ». Un service cependant a été rajouté, c'est un mécanisme de correction des erreurs de traitement par restauration d'un état antérieur connu. Les services de transport sont des services de communication point à point, c'est-à-dire avec deux interlocuteurs. Mais le modèle OSI doit aussi convenir aux communications multipoints.
Information extractionInformation extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents and other electronically represented sources. In most of the cases this activity concerns processing human language texts by means of natural language processing (NLP). Recent activities in multimedia document processing like automatic annotation and content extraction out of images/audio/video/documents could be seen as information extraction Due to the difficulty of the problem, current approaches to IE (as of 2010) focus on narrowly restricted domains.
Couche réseauLa couche de réseau est la troisième couche du modèle OSI. À ne pas confondre avec la couche « accès réseau » du modèle TCP/IP. thumb|Position de la couche réseau dans le modèle OSI et dans TCP-IP La couche réseau construit une voie de communication de bout à bout à partir de voies de communication avec ses voisins directs. Ses apports fonctionnels principaux sont donc: le routage détermination d'un chemin permettant de relier les 2 machines distantes; le relayage retransmission d'un PDU (Protocol Data Unit ou Unité de données de protocole) dont la destination n'est pas locale pour le rapprocher de sa destination finale.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
Astuce du noyauEn apprentissage automatique, l'astuce du noyau, ou kernel trick en anglais, est une méthode qui permet d'utiliser un classifieur linéaire pour résoudre un problème non linéaire. L'idée est de transformer l'espace de représentation des données d'entrées en un espace de plus grande dimension, où un classifieur linéaire peut être utilisé et obtenir de bonnes performances. La discrimination linéaire dans l'espace de grande dimension (appelé aussi espace de redescription) est équivalente à une discrimination non linéaire dans l'espace d'origine.
Link layerIn computer networking, the link layer is the lowest layer in the Internet protocol suite, the networking architecture of the Internet. The link layer is the group of methods and communications protocols confined to the link that a host is physically connected to. The link is the physical and logical network component used to interconnect hosts or nodes in the network and a link protocol is a suite of methods and standards that operate only between adjacent network nodes of a network segment.
Traitement automatique du langage naturelLe traitement automatique du langage naturel (TALN), en anglais natural language processing ou NLP, est un domaine multidisciplinaire impliquant la linguistique, l'informatique et l'intelligence artificielle, qui vise à créer des outils de traitement du langage naturel pour diverses applications. Il ne doit pas être confondu avec la linguistique informatique, qui vise à comprendre les langues au moyen d'outils informatiques.
Learning to rankLearning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. Training data consists of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g. "relevant" or "not relevant") for each item.
Apprentissage auto-superviséL'apprentissage auto-supervisé ("self-supervised learning" en anglais) (SSL) est une méthode d'apprentissage automatique. Il apprend à partir d'échantillons de données non étiquetés. Il peut être considéré comme une forme intermédiaire entre l'apprentissage supervisé et non supervisé. Il est basé sur un réseau de neurones artificiels. Le réseau de neurones apprend en deux étapes. Tout d'abord, la tâche est résolue sur la base de pseudo-étiquettes qui aident à initialiser les poids du réseau.
Ontology learningOntology learning (ontology extraction, ontology generation, or ontology acquisition) is the automatic or semi-automatic creation of ontologies, including extracting the corresponding domain's terms and the relationships between the concepts that these terms represent from a corpus of natural language text, and encoding them with an ontology language for easy retrieval. As building ontologies manually is extremely labor-intensive and time-consuming, there is great motivation to automate the process.