Nonlinear dimensionality reductionNonlinear dimensionality reduction, also known as manifold learning, refers to various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa) itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.
Noyau (statistiques)Un noyau est une fonction de pondération utilisée dans les techniques d'estimation non-paramétrique. Les noyaux interviennent dans l'estimateur par noyau pour estimer la densité de probabilité d'une variable aléatoire, ou encore dans la régression paramétrique (à noyau) pour estimer des espérances conditionnelles. Pour les séries temporelles, le noyau permet d'estimer la densité spectrale. Un noyau est une fonction positive, intégrable et à valeurs réelles, notée K, qui doit vérifier les deux conditions suivantes : normalisation : symétrie : pour toutes les valeurs de u.
Couche transportthumb|Position de la couche transport dans le modèle ISO et dans TCP-IP En réseaux, la couche dite de transport constitue la quatrième couche du modèle OSI. Cette couche regroupe l'ensemble des protocoles chargés de la gestion des erreurs et du contrôle des flux réseaux. Les deux principaux protocoles utilisés sont les protocoles TCP et UDP. Modèle OSI La couche transport gère les communications de bout en bout entre processus. Cette couche est souvent la plus haute couche où on se préoccupe de la correction des erreurs.
Couche présentationthumb|Position de la couche présentation dans le modèle OSI La couche présentation est la du modèle OSI. La couche présentation est chargée du codage des données applicatives. Les couches 1 à 5 transportent des octets bruts sans se préoccuper de leur signification. Mais ce qui doit être transporté en pratique, c'est du texte, des nombres et parfois des structures de données arbitrairement complexes. Un protocole de routage par exemple doit transporter un graphe représentant au moins partiellement la topologie du réseau.
Estimation par noyauEn statistique, l’estimation par noyau (ou encore méthode de Parzen-Rosenblatt ; en anglais, kernel density estimation ou KDE) est une méthode non-paramétrique d’estimation de la densité de probabilité d’une variable aléatoire. Elle se base sur un échantillon d’une population statistique et permet d’estimer la densité en tout point du support. En ce sens, cette méthode généralise astucieusement la méthode d’estimation par un histogramme. Si est un échantillon i.i.d.
Positive-definite kernelIn operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues and generalizations have arisen in diverse parts of mathematics.
Partitionnement spectralEn informatique théorique, le partitionnement spectral ou spectral clustering en anglais, est un type de partitionnement de données prenant en compte les propriétés spectrales de l'entrée. Le partitionnement spectral utilise le plus souvent les vecteurs propres d'une matrice de similarités. Par rapport à des algorithmes classiques comme celui des k-moyennes, cette technique offre l'avantage de classer des ensembles de données de structure « non-globulaire », dans un espace de représentation adéquat.