Trans-Capacitance Modeling in Junctionless Gate-All-Around Nanowire FETs
Publications associées (33)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The down-scaling of conventional MOSFETs has led to an impending power crisis, in which static power consumption is becoming too high. In order to improve the energy-efficiency of electronic circuits, small swing switches are interesting candidates to repl ...
A novel approach for the fabrication of transistors and circuits based on individual single-crystalline ZnO nanowires synthesized by a low-temperature hydrothermal method is reported. The gate dielectric of these transistors is a self-assembled monolayer t ...
Silicon technology has advanced at exponential rates both in performances and productivity through the past four decades. However the limit of CMOS technology seems to be closer and closer and in the future we might see an increasing number of hybrid appro ...
This thesis aims at the site-specific realization of self-assembled field-effect transistors (FETs) based on semiconducting Zinc oxide NWs and their application towards chemical and bio-sensing in liquid medium. At first, a solution based growth method for ...
The increase of components density in advanced microelectronics is practically dictated by the device size and the achievable pitch between the devices. Scaling down dimensions of devices and progress in the circuit design allowed following Moore's law dur ...
Semiconductor nanowires are an emerging class of materials with great potential for applications in future electronic devices. The small footprint and the large charge-carrier mobilities of nanowires make them potentially useful for applications with high- ...
Over the recent decades, the balance between increasing the complexity of computer chips and simultaneously reducing cost per bit has been accommodated by down-scaling. While extremely successful in the past, this approach now faces grave limitations leadi ...
Interest in PVDF-TrFE copolymers as ferroelectric material for Memory application is driven by the prospect of having low cost, low operating voltage and fully organic device. Some previous studies reported FET designs using copolymers [refs 1,2] but none ...
Technology scaling improves the energy, performance, and area of the digital circuits. With further scaling into sub-45nm regime, we are moving toward very low supply (VDD) and threshold voltages (VT), smaller VDD/VT ratio, high leakage current, and large ...
In this letter, we propose a lateral asymmetric strain profile in a silicon nanowire or ultrathin silicon film as a key technology booster for the performance of all-silicon Tunnel FETs. We demonstrate by simulation that a Gaussian tensile-strain profile w ...
Institute of Electrical and Electronics Engineers2009