Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012
Publications associées (67)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
Essentially nonoscillatory (ENO) and weighted ENO (WENO) methods on equidistant Cartesian grids are widely employed to solve partial differential equations with discontinuous solutions. However, stable ENO/WENO methods on unstructured grids are less well s ...
In this work we study, from the numerical point of view, a problem involving one-dimensional thermoelastic mixtures with two different temperatures; that is, when each component of the mixture has its own temperature. The mechanical problem consists of two ...
The paperpresents a comprehensive approach for full-wave modeling of grounding systems buried in a multilayer stratified ground. The dyadic spectral domain Green's function associated with the multilayer stratified ground is first derived. This Green's fun ...
Institute of Electrical and Electronics Engineers2017
High-order methods inspired by the multi-step Adams methods are proposed for systems of fractional differential equations. The schemes are based on an expansion in a weighted space. To obtain the schemes this expansion is terminated after terms. We study t ...
Essentially non-oscillatory (ENO) and weighted ENO (WENO) methods on equidistant Cartesian grids are widely used to solve partial differential equations with discontinuous solutions. However, stable ENO/WENO methods on unstructured grids are less well stud ...
Stabilized Runge–Kutta (aka Chebyshev) methods are especially efficient for the numerical solution of large systems of stiff differential equations because they are fully explicit; hence, they are inherently parallel and easily accommodate nonlinearity. Fo ...
In this work, we consider the approximation of Hilbert space-valued meromorphic functions that arise as solution maps of parametric PDEs whose operator is the shift of an operator with normal and compact resolvent, e.g., the Helmholtz equation. In this res ...
Dealing with strong shocks while retaining low numerical dissipation traditionally has been one of the major challenges for high order methods like discontinuous Galerkin (DG). In the literature, shock capturing models have been designed for DG based on va ...
This paper presents a new analytical model for estimating the free vibration of tapered friction piles. The governing differential equation for the free vibration of statically axially-loaded piles embedded in non-homogeneous soil is derived. The equation ...