Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper investigates the performance of 6 versions of Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with restarts on a set of 28 noiseless optimization problems (including 23 multi-modal ones) designed for the special session on real-parameter optimization of CEC 2013. The experimental validation of the restart strategies shows that: i). the versions of CMA-ES with weighted active covariance matrix update outperform the original versions of CMA-ES, especially on ill-conditioned problems; ii). the original restart strategies with increasing population size (IPOP) are usually outperformed by the bi-population restart strategies where the initial mutation step-size is also varied; iii). the recently proposed alternative restart strategies for CMA-ES demonstrate a competitive performance and are ranked first w.r.t. the proportion of function-target pairs solved after the full run on all 10-, 30- and 50-dimensional problems.
Anne-Florence Raphaëlle Bitbol
Katrin Beyer, Mahmoud S. M. Shaqfa