A reflectarray cell able to dynamically control the reflection phase at a variable frequency is presented. This capability enables beam-scanning reflectarrays with frequency reconfigurability, which is a novel capability with applications in frequency-hopping systems, cognitive radio and satellite communications. The proposed cell combines switching and variable impedance loading techniques to maximize the frequency range over which a large dynamic phase range can be obtained. Analytical and numerical approaches are used to design and optimize the reflecting cell, which uses two semiconductor RF-switches and one varactor. An analog phase range above 270 degrees is achieved over a 50% frequency range, from 1.88 GHz to 3.07 GHz, with flat losses of 0.8 dB. For an analog phase range of 180 degrees the cell achieves a 1: 2 frequency reconfiguration range. It is also verified that the cell preserves good performance, and in particular low crosspolarization, under oblique incidence as well. A fully operational cell was fabricated and measured, demonstrating good agreement with simulation results.
Fabio Nobile, Davide Pradovera
Alireza Karimi, Philippe Louis Schuchert
Mario Paolone, André Hodder, Lucien André Félicien Pierrejean, Simone Rametti