Résumé
En optique géométrique, le phénomène de réflexion totale survient lorsqu'un rayon lumineux arrive sur la surface de séparation de deux milieux d'indices optiques différents avec un angle d'incidence supérieur à une valeur critique : il n'y a alors plus de rayon réfracté transmis et seul subsiste un rayon réfléchi. Ce phénomène n'intervient que lorsque le rayon lumineux incident se trouve dans un milieu d'indice de réfraction plus grand que l'éventuel rayon réfracté : réfraction de type verre/air par exemple. Ce phénomène est à la base des communications par fibre optique. Sur le schéma ci-contre, l'angle θ1 est plus petit que l'angle limite et le rayon rouge est à la fois réfléchi et réfracté. Pour le rayon bleu incident selon l'angle θ2 supérieur à l'angle critique, il y a réflexion totale. La mesure de l'angle limite permet ainsi de connaître le rapport des indices de réfraction des deux matériaux, et si l'un est connu de mesurer l'autre. Ce principe est utilisé dans les réfractomètres. vignette|Résultat d'une simulation électromagnétique réalisée avec le programme Moosh montrant un faisceau réfléchi totalement par un dioptre entre deux milieux d'indice et On rappelle la loi de Snell-Descartes pour la réfraction : où et sont les indices respectifs des milieux 1 et 2 et et les angles formés avec la normale par respectivement le rayon incident et le rayon réfracté. On en déduit l'expression Cette équation possède une solution en si et seulement si le membre de droite est compris entre -1 et +1. On peut donc constater que pour , cette équation possède toujours une solution en , c'est-à-dire que pour , il existe toujours un rayon réfracté et il n'y a jamais réflexion totale. Dans le cas , l'expression peut prendre des valeurs en dehors de l'intervalle [-1,1] : il n'y a alors pas de rayon réfracté et la réflexion est totale. La valeur de limite est la valeur pour laquelle , et de cette équation on déduit alors l'angle d'incidence limite correspondant : On peut aussi aborder le problème selon une autre approche (qui est en fait équivalente) : à la traversée d'un dioptre d'un indice grand vers un indice plus petit, le rayon réfracté s'écarte de la normale.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.