En optique géométrique, le phénomène de réflexion totale survient lorsqu'un rayon lumineux arrive sur la surface de séparation de deux milieux d'indices optiques différents avec un angle d'incidence supérieur à une valeur critique : il n'y a alors plus de rayon réfracté transmis et seul subsiste un rayon réfléchi.
Ce phénomène n'intervient que lorsque le rayon lumineux incident se trouve dans un milieu d'indice de réfraction plus grand que l'éventuel rayon réfracté : réfraction de type verre/air par exemple. Ce phénomène est à la base des communications par fibre optique.
Sur le schéma ci-contre, l'angle θ1 est plus petit que l'angle limite et le rayon rouge est à la fois réfléchi et réfracté. Pour le rayon bleu incident selon l'angle θ2 supérieur à l'angle critique, il y a réflexion totale.
La mesure de l'angle limite permet ainsi de connaître le rapport des indices de réfraction des deux matériaux, et si l'un est connu de mesurer l'autre. Ce principe est utilisé dans les réfractomètres.
vignette|Résultat d'une simulation électromagnétique réalisée avec le programme Moosh montrant un faisceau réfléchi totalement par un dioptre entre deux milieux d'indice et
On rappelle la loi de Snell-Descartes pour la réfraction :
où et sont les indices respectifs des milieux 1 et 2 et et les angles formés avec la normale par respectivement le rayon incident et le rayon réfracté.
On en déduit l'expression
Cette équation possède une solution en si et seulement si le membre de droite est compris entre -1 et +1. On peut donc constater que pour , cette équation possède toujours une solution en , c'est-à-dire que pour , il existe toujours un rayon réfracté et il n'y a jamais réflexion totale.
Dans le cas , l'expression peut prendre des valeurs en dehors de l'intervalle [-1,1] : il n'y a alors pas de rayon réfracté et la réflexion est totale.
La valeur de limite est la valeur pour laquelle , et de cette équation on déduit alors l'angle d'incidence limite correspondant :
On peut aussi aborder le problème selon une autre approche (qui est en fait équivalente) : à la traversée d'un dioptre d'un indice grand vers un indice plus petit, le rayon réfracté s'écarte de la normale.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|upright=1.5|Trois prismes à base triangulaire : un prisme à angle droit, un prisme à 60° et un prisme à 30°.|alt=Photographie de trois prismes en verre posés sur une table en bois. Un prisme est un bloc de verre taillé, composé classiquement de trois faces sur une base triangulaire, mais qui peut adopter des formes plus complexes et éloignées du prisme à base triangulaire usuel. C'est un instrument optique utilisé pour réfracter la lumière, la réfléchir ou la disperser.
Une fibre optique est un fil dont l’âme, très fine et faite de verre ou de plastique, a la propriété de conduire la lumière et sert pour la fibroscopie, l'éclairage ou la transmission de données numériques. Elle offre un débit d'information nettement supérieur à celui des câbles coaxiaux et peut servir de support à un réseau « large bande » par lequel transitent aussi bien la télévision, le téléphone, la visioconférence ou les données informatiques.
L’optique géométrique est une branche de l'optique qui s'appuie notamment sur le modèle du rayon lumineux. Cette approche simple permet entre autres des constructions géométriques d’images, d’où son nom. Elle constitue l'outil le plus flexible et le plus efficace pour traiter les systèmes dioptriques et catadioptriques. Elle permet ainsi d'expliquer la formation des images. L'optique géométrique (la première théorie optique formulée) se trouve validée a posteriori par l'optique ondulatoire, en faisant l'approximation que tous les éléments utilisés sont de grande dimension devant la longueur d'onde de la lumière.
Cette UE propose une réflexion sur le campus EPFL-UNIL à travers une analyse transcalaire pour complémenter les stratégies qui définissent l'environnement construit et les espaces publics des deux cam
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
Ce cours traite des principaux phénomènes physiques observables dans le bâtiment et doit permettre à l'étudiant d'acquérir des connaissances de base dans le domaine de la physique du bâtiment.
Synchrotrons and X-Ray Free Electron Lasers (part 1)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Explore les prismes, la réflexion interne totale dans les diamants, les fibres optiques, l'eikonal dans les milieux inhomogènes et la mise au point des ondes par les lentilles.
A luminescent solar concentrator (LSC) offers a viable solution to spectrally convert and concentrate both direct and diffuse sunlight without the need for tracking. Its potential for commercialization is currently limited by the optical performance. A det ...
GaN exhibits a decomposition tendency for temperatures far below its melting point and common growth temperatures used in metal-organic vapour phase epitaxy (MOVPE).This characteristic is known to be a major obstacle for realising GaN bulk substrate. There ...
EPFL2024
Evaluating the reflection of solar radiation by Building Integrated Photovoltaics (BIPV) with structured front-glass is challenging for two reasons. First, the resulting irregular scattering of light cannot be accounted for by simple reflection models. Sec ...