Lie bracket of vector fieldsIn the mathematical field of differential topology, the Lie bracket of vector fields, also known as the Jacobi–Lie bracket or the commutator of vector fields, is an operator that assigns to any two vector fields X and Y on a smooth manifold M a third vector field denoted [X, Y]. Conceptually, the Lie bracket [X, Y] is the derivative of Y along the flow generated by X, and is sometimes denoted ("Lie derivative of Y along X"). This generalizes to the Lie derivative of any tensor field along the flow generated by X.
Arc de méridienEn géodésie, la mesure d'un arc de méridien est la détermination la plus exacte possible de la distance entre deux points situés sur un même méridien, soit à la même longitude. Deux ou plusieurs déterminations de ce type dans des endroits différents précisent ensuite la forme de l'ellipsoïde de référence qui donne la meilleure approximation de la forme du géoïde. Ce processus est appelé « déterminer la figure de la Terre ». Les premières mesures de la taille d'une Terre sphérique eurent besoin d'un seul arc.
FeuilletageEn mathématiques, et plus précisément en géométrie différentielle, on dit qu'une variété est feuilletée, ou munie d'un feuilletage, si elle se décompose en sous-variétés de même dimension, appelées feuilles, qui localement, s'empilent comme les sous-espaces R × R. Formellement, un feuilletage sur est un atlas feuilleté, autrement dit une famille de cartes locales , où , et les changements de carte préservent cette décomposition : pour tout , . thumb|Schéma de changement de carte feuilletée.