Publication

A Hierarchical Structure of Cortical Interneuron Electrical Diversity Revealed by Automated Statistical Analysis

Résumé

Although the diversity of cortical interneuron electrical properties is well recognized, the number of distinct electrical types (e-types) is still a matter of debate. Recently, descriptions of interneuron variability were standardized by multiple laboratories on the basis of a subjective classification scheme as set out by the Petilla convention (Petilla Interneuron Nomenclature Group, PING). Here, we present a quantitative, statistical analysis of a database of nearly five hundred neurons manually annotated according to the PING nomenclature. For each cell, 38 features were extracted from responses to suprathreshold current stimuli and statistically analyzed to examine whether cortical interneurons subdivide into e-types. We showed that the partitioning into different e-types is indeed the major component of data variability. The analysis suggests refining the PING e-type classification to be hierarchical, whereby most variability is first captured within a coarse subpartition, and then subsequently divided into finer subpartitions. The coarse partition matches the well-known partitioning of interneurons into fast spiking and adapting cells. Finer subpartitions match the burst, continuous, and delayed subtypes. Additionally, our analysis enabled the ranking of features according to their ability to differentiate among e-types. We showed that our quantitative e-type assignment is more than 90 accurate and manages to catch several human errors.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (36)
Inférence statistique
vignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Interneurone
Un interneurone est un neurone multipolaire qui établit de multiples connexions entre un réseau afférent et un réseau efférent. Comme les motoneurones, leur corps cellulaire est toujours situé dans le système nerveux central (SNC). La majorité des interneurones sont inhibiteurs et sécrètent un neurotransmetteur caractéristique, le GABA. En comparaison du système nerveux périphérique (SNP), les neurones du système nerveux central peuvent être considérés comme des interneurones.
Statistique
La statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».
Afficher plus
Publications associées (39)

Cortical cell assemblies and their underlying connectivity: An in silico study

Michael Reimann, András Ecker, Sirio Bolaños Puchet, James Bryden Isbister, Daniela Egas Santander

Recent developments in experimental techniques have enabled simultaneous recordings from thousands of neurons, enabling the study of functional cell assemblies. However, determining the patterns of synaptic connectivity giving rise to these assemblies rema ...
2024

Cortical cell assemblies and their underlying connectivity: an in silico study

Michael Reimann, András Ecker, Sirio Bolaños Puchet, James Bryden Isbister, Daniela Egas Santander

Recent developments in experimental techniques have enabled simultaneous recordings from thousands of neurons, enabling the study of functional cell assemblies. However, determining the patterns of synaptic connectivity giving rise to these assemblies rema ...
2023

Inferring and validating mechanistic models of neural microcircuits based on spike-train data

Olivier Richard Hagens

The interpretation of neuronal spike train recordings often relies on abstract statistical models that allow for principled parameter estimation and model selection but provide only limited insights into underlying microcircuits. In contrast, mechanistic m ...
2019
Afficher plus
MOOCs associés (25)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.