Densité de courantLa densité de courant, ou densité volumique de courant, est un vecteur qui décrit le courant électrique à l'échelle locale, en tout point d'un système physique. Dans le Système international d'unités, son module s'exprime en ampères par mètre carré ( ou ). À l'échelle du système tout entier il s'agit d'un champ de vecteurs, puisque le vecteur densité de courant est défini en tout point.
Oxyde d'indium-étainL'oxyde d'indium-étain (ITO, pour l'anglais indium tin oxide), ou oxyde d'indium dopé à l'étain, est un mélange d'oxyde d'indium(III) et d'oxyde d'étain (IV) SnO, dans la proportion massique typique de 90 % du premier et 10 % du second. Ce composé est incolore et transparent en couches minces, de jaunâtre à gris sous forme massique. La caractéristique principale de l'oxyde d'indium-étain est sa combinaison de conductivité électrique et de transparence optique.
Courant électriqueUn courant électrique est un mouvement d'ensemble de porteurs de charges électriques, généralement des électrons, au sein d'un matériau conducteur. Ces déplacements sont imposés par l'action de la force électromagnétique, dont l'interaction avec la matière est le fondement de l'électricité. On doit au physicien français André-Marie Ampère la distinction entre courant et tension électriques.
Laser pumpingLaser pumping is the act of energy transfer from an external source into the gain medium of a laser. The energy is absorbed in the medium, producing excited states in its atoms. When the number of particles in one excited state exceeds the number of particles in the ground state or a less-excited state, population inversion is achieved. In this condition, the mechanism of stimulated emission can take place and the medium can act as a laser or an optical amplifier. The pump power must be higher than the lasing threshold of the laser.
Théorème d'AmpèreEn magnétostatique, le théorème d'Ampère permet de déterminer la valeur du champ magnétique grâce à la donnée des courants électriques. Ce théorème est une forme intégrale de l'équation de Maxwell-Ampère. Il a été découvert par André-Marie Ampère, et constitue l'équivalent magnétostatique du théorème de Gauss. Pour être appliqué analytiquement de manière simple, le théorème d'Ampère nécessite que le problème envisagé soit de symétrie élevée.