Consensus forecastUsed in a number of sciences, ranging from econometrics to meteorology, consensus forecasts are predictions of the future that are created by combining several separate forecasts which have often been created using different methodologies. Also known as combining forecasts, forecast averaging or model averaging (in econometrics and statistics) and committee machines, ensemble averaging or expert aggregation (in machine learning).
Technology forecastingTechnology forecasting attempts to predict the future characteristics of useful technological machines, procedures or techniques. Researchers create technology forecasts based on past experience and current technological developments. Like other forecasts, technology forecasting can be helpful for both public and private organizations to make smart decisions. By analyzing future opportunities and threats, the forecaster can improve decisions in order to achieve maximum benefits.
Single-stock futuresIn finance, a single-stock future (SSF) is a type of futures contract between two parties to exchange a specified number of stocks in a company for a price agreed today (the futures price or the strike price) with delivery occurring at a specified future date, the delivery date. The contracts can be later traded on a futures exchange. The party agreeing to take delivery of the underlying stock in the future, the "buyer" of the contract, is said to be "long", and the party agreeing to deliver the stock in the future, the "seller" of the contract, is said to be "short".
Vente à découvertLa vente à découvert (en anglais : short-selling) est une stratégie financière qui consiste à investir de manière à générer un profit dans le cas où le prix d'un actif financier baisse. Il s'agit du contraire de la position longue. Une vente à découvert peut être menée de plusieurs manières. La technique la plus connue est le short-selling : un agent financier emprunte un actif (par exemple, une action) et promet au prêteur de lui rendre à terme ; l'agent vend l'actif à un acheteur, puis, quelque temps plus tard, rachète l'actif financier en question à un prix différent selon l'évolution du marché pour le rendre à celui qui lui avait prêté à l'origine.
Regression validationIn statistics, regression validation is the process of deciding whether the numerical results quantifying hypothesized relationships between variables, obtained from regression analysis, are acceptable as descriptions of the data. The validation process can involve analyzing the goodness of fit of the regression, analyzing whether the regression residuals are random, and checking whether the model's predictive performance deteriorates substantially when applied to data that were not used in model estimation.
Statistical model validationIn statistics, model validation is the task of evaluating whether a chosen statistical model is appropriate or not. Oftentimes in statistical inference, inferences from models that appear to fit their data may be flukes, resulting in a misunderstanding by researchers of the actual relevance of their model. To combat this, model validation is used to test whether a statistical model can hold up to permutations in the data.
Prévision météorologiqueLa prévision météorologique est une application des connaissances en météorologie et des techniques modernes de prises de données et d’informatique pour prévoir l’état de l’atmosphère à un temps ultérieur. L’histoire de la prévision du temps remonte aux temps immémoriaux avec les oracles et devins mais la science moderne date vraiment de la fin du et du début du . Elle s’est cependant affirmée depuis la Seconde Guerre mondiale alors que les moyens techniques comme le radar et les communications modernes ont rendu l’accès aux données plus rapide et plus nombreuses.
Prévision d'ensemblesvignette|En haut: Modèle déterministe du WRF pour la prévision de trajectoire de l'ouragan Rita en 2005. En bas : Dispersion des différents modèles utilisés par le National Hurricane Center pour la même tempête. La prévision d'ensembles est une méthode de prévision numérique du temps utilisé pour tenter de générer un échantillon représentatif des états futurs possibles d'un système dynamique. En effet, ni les observations, ni l'analyse, ni le modèle de prévision ne sont parfaits et la dynamique atmosphérique est très sensible, dans certaines conditions, à la moindre fluctuation.
Variable latenteIn statistics, latent variables (from Latin: present participle of lateo, “lie hidden”) are variables that can only be inferred indirectly through a mathematical model from other observable variables that can be directly observed or measured. Such latent variable models are used in many disciplines, including political science, demography, engineering, medicine, ecology, physics, machine learning/artificial intelligence, bioinformatics, chemometrics, natural language processing, management, psychology and the social sciences.
Investissement socialement responsableL’investissement socialement responsable (ISR) est une stratégie d'investissement qui tient compte à la fois de préoccupations de rentabilité et de préoccupations environnementales et sociétales. Son objectif est double en ce qu'il cherche à être rentable tout en s'accordant une mission sociale. L'investissement socialement responsable est ainsi l'application des principes du développement durable aux placements financiers. L'investissement socialement responsable ne dispose pas d'une définition unique.