Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Analyse temporelle statiqueL’analyse temporelle statique (en anglais : static timing analysis, TSA) est une méthode d'évaluation de la fréquence de fonctionnement d'un circuit intégré. Contrairement à l'analyse dynamique, elle ne nécessite pas l'usage de vecteur de test ni de simulation. Elle repose sur le calcul et l'addition des délais de chaque porte logique élémentaire d'un circuit. L'analyse temporelle statique permet de calculer le plus long chemin logique d'un circuit, le chemin critique.
Propensity score matchingIn the statistical analysis of observational data, propensity score matching (PSM) is a statistical matching technique that attempts to estimate the effect of a treatment, policy, or other intervention by accounting for the covariates that predict receiving the treatment. PSM attempts to reduce the bias due to confounding variables that could be found in an estimate of the treatment effect obtained from simply comparing outcomes among units that received the treatment versus those that did not. Paul R.
Méthode d'appariementEn statistiques et en économétrie, les méthodes d'appariement (en anglais matching) sont un ensemble de méthodes statistiques permettant d'évaluer l'effet causal d'un traitement. Cette méthode est notamment utilisée pour évaluer l'effet causal d'un traitement en comparant des individus traités et non-traités ayant des caractéristiques observables similaires. Les méthodes d'appariement ont été promues par Donald Rubin. Elles ont été fortement critiquées par Robert LaLonde en . Modèle causal de Neyman-Rubin
Théorie synthétique de l'évolutionvignette|Julian Huxley nomme cette théorie théorie synthétique en 1942 (image 1922). La (ou TSE) est une théorie darwinienne de l'évolution basée sur la sélection naturelle de variations aléatoires du génome. Elle est aussi appelée synthèse néodarwinienne, théorie néodarwinienne de l'évolution ou plus simplement néodarwinisme. Cette théorie est une synthèse de diverses théories biologiques du et du début du , dont les lois de Mendel, la génétique des populations et la sélection naturelle.