Foncteur adjointL'adjonction est une situation omniprésente en mathématiques, et formalisée en théorie des catégories par la notion de foncteurs adjoints. Une adjonction entre deux catégories et est une paire de deux foncteurs et vérifiant que, pour tout objet X dans C et Y dans D, il existe une bijection entre les ensembles de morphismes correspondants et la famille de bijections est naturelle en X et Y. On dit que F et G sont des foncteurs adjoints et plus précisément, que F est « adjoint à gauche de G » ou que G est « adjoint à droite de F ».
Catégorie groupoïdeEn mathématiques, et plus particulièrement en théorie des catégories et en topologie algébrique, la notion de groupoïde généralise à la fois les notions de groupe, de relation d'équivalence sur un ensemble, et de l'action d'un groupe sur un ensemble. Elle a été initialement développée par Heinrich Brandt en 1927. Les groupoïdes sont souvent utilisés pour représenter certaines informations sur des objets topologiques ou géométriques comme les variétés. Un groupoïde est une petite catégorie dans laquelle tout morphisme est un isomorphisme.
Category (mathematics)In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.
Accessible categoryThe theory of accessible categories is a part of mathematics, specifically of . It attempts to describe categories in terms of the "size" (a cardinal number) of the operations needed to generate their objects. The theory originates in the work of Grothendieck completed by 1969, and Gabriel and Ulmer (1971). It has been further developed in 1989 by Michael Makkai and Robert Paré, with motivation coming from model theory, a branch of mathematical logic. A standard text book by Adámek and Rosický appeared in 1994.
Regular categoryIn , a regular category is a category with and coequalizers of a pair of morphisms called kernel pairs, satisfying certain exactness conditions. In that way, regular categories recapture many properties of abelian categories, like the existence of images, without requiring additivity. At the same time, regular categories provide a foundation for the study of a fragment of first-order logic, known as regular logic. A category C is called regular if it satisfies the following three properties: C is .
Glossary of category theoryThis is a glossary of properties and concepts in in mathematics. (see also .) Notes on foundations: In many expositions (e.g., Vistoli), the set-theoretic issues are ignored; this means, for instance, that one does not distinguish between small and large categories and that one can arbitrarily form a localization of a category. Like those expositions, this glossary also generally ignores the set-theoretic issues, except when they are relevant (e.g., the discussion on accessibility.
Designvignette|Chaise de Charles Rennie Mackintosh, 1897. Le design, le stylisme ou la stylique est une activité de création souvent à vocation industrielle ou commerciale, pouvant s’orienter vers les milieux sociaux, politiques, scientifiques et environnementaux. Le but premier du design est d’inventer, d’améliorer ou de faciliter l’usage ou le processus d’un élément ayant à interagir avec un produit ou un service matériel ou virtuel.
ObservationL’observation est un des régimes de la preuve scientifique : c'est une expérience d'accumulation et de recueil d'informations sur un phénomène, un objet d'étude, en absence de variables ou sans contrôler les variables et les paramètres. L'observation est une étape différente, et souvent complémentaire, d'une expérimentation ou expérience dite contrôlée. Elle permet de valider/invalider des hypothèses ou de vérifier des observations ou des expérimentations antérieures.
Pragmaticism"Pragmaticism" is a term used by Charles Sanders Peirce for his pragmatic philosophy starting in 1905, in order to distance himself and it from pragmatism, the original name, which had been used in a manner he did not approve of in the "literary journals". Peirce in 1905 announced his coinage "pragmaticism", saying that it was "ugly enough to be safe from kidnappers" (Collected Papers (CP) 5.414). Today, outside of philosophy, "pragmatism" is often taken to refer to a compromise of aims or principles, even a ruthless search for mercenary advantage.
RationalitéEn philosophie, en psychologie et en sociologie, la rationalité est un concept servant à définir et mesurer la capacité de raisonnement, telle qu'elle se manifeste dans un (ou des) comportement(s) humain(s). Plus précisément, le mot désigne la qualité de ce qui, dans l’ordre de la connaissance, est (c'est-à-dire relevant de l'usage de la raison, ou intellect) et de ce qui, plus rarement, dans l’ordre de la pratique, relève du raisonnable.