Théorème de représentation de Stone pour les algèbres de BooleEn mathématiques, le théorème de représentation de Stone pour les algèbres de Boole établit une équivalence entre la catégorie des algèbres de Boole et celle des espaces de Stone (espaces compacts totalement discontinus). Cette correspondance a été établie par Marshall Stone en 1936. Soit A une algèbre de Boole. On lui associe l'ensemble S(A) des morphismes , appelé « l'espace de Stone associé à A ».
Logique algébriqueEn logique mathématique, la logique algébrique est le raisonnement obtenu en manipulant des équations avec des variables libres. Ce qui est maintenant généralement appelé la logique algébrique classique se concentre sur l'identification et la description algébrique des modèles adaptés à l'étude de différentes logiques (sous la forme de classes d'algèbres qui constituent la sémantique algébrique de ces systèmes déductifs) et aux problèmes connexes, comme la représentation et la dualité.
And-inverter graphAn and-inverter graph (AIG) is a directed, acyclic graph that represents a structural implementation of the logical functionality of a circuit or network. An AIG consists of two-input nodes representing logical conjunction, terminal nodes labeled with variable names, and edges optionally containing markers indicating logical negation. This representation of a logic function is rarely structurally efficient for large circuits, but is an efficient representation for manipulation of boolean functions.
Graphe de PappusEn théorie des graphes, le graphe de Pappus est un graphe cubique symétrique possédant 18 sommets et 27 arêtes. Il doit son nom à Pappus d'Alexandrie, un mathématicien du . C'est le graphe d'incidence de la configuration apparaissant dans le théorème de Pappus. Le graphe de Pappus est hamiltonien et possède 72 cycles hamiltonien distincts. Le diamètre du graphe de Pappus, l'excentricité maximale de ses sommets, est 4, son rayon, l'excentricité minimale de ses sommets, est 4 et sa maille, la longueur de son plus court cycle, est 6.
Graphe sommet-transitifEn théorie des graphes, un graphe non-orienté est sommet-transitif si pour tout couple de sommets, il existe un automorphisme de graphe qui envoie le premier sommet sur le deuxième. De manière informelle cette propriété indique que tous les sommets jouent exactement le même rôle à l'intérieur du graphe. Un graphe est sommet-transitif si pour tout couple de sommets, il existe un automorphisme de graphe qui envoie le premier sommet sur le deuxième.
Infinite-valued logicIn logic, an infinite-valued logic (or real-valued logic or infinitely-many-valued logic) is a many-valued logic in which truth values comprise a continuous range. Traditionally, in Aristotle's logic, logic other than bivalent logic was abnormal, as the law of the excluded middle precluded more than two possible values (i.e., "true" and "false") for any proposition. Modern three-valued logic (ternary logic) allows for an additional possible truth value (i.e.