Bayesian hierarchical modelingBayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the uncertainty that is present. The result of this integration is the posterior distribution, also known as the updated probability estimate, as additional evidence on the prior distribution is acquired.
Droit au respect de la vie privéedroite|vignette| Le respect de la vie privée peut être limitée par la surveillance – dans ce cas par la vidéosurveillance. Le droit à la vie privée est un élément juridique qui vise à protéger le respect de la vie privée des individus. Plus de 150 constitutions nationales mentionnent le droit à la vie privée. Le , l'assemblée générale des Nations Unies adopte la Déclaration universelle des droits de l'homme (DUDH) rédigée à l'origine pour garantir les droits individuels de chacun, en tout lieu.
Vie privéevignette|droite|Dessin de Cham dans Le Charivari en 1868 : « Le portrait de ma femme que vous envoyez à l’Exposition ? Vous lui avez mis un grain de beauté sous le bras gauche, c’est de la vie privée. Je vous fais un procès ». La vie privée (du latin privatus, « séparé de, privé de ») est la capacité, pour une personne ou pour un groupe de personnes, de s'isoler afin de protéger son bien-être. Les limites de la vie privée ainsi que ce qui est considéré comme privé diffèrent selon les groupes, les cultures et les individus, selon les coutumes et les traditions bien qu'il existe toujours un certain tronc commun.
Probabilité a posterioriDans le théorème de Bayes, la probabilité a posteriori désigne la probabilité recalculée ou remesurée qu'un évènement ait lieu en prenant en considération une nouvelle information. Autrement dit, la probabilité a posteriori est la probabilité qu'un évènement A ait lieu étant donné que l'évènement B a eu lieu. Elle s'oppose à la probabilité a priori dans l'inférence bayésienne. La loi a priori qu'un évènement ait lieu avec vraisemblance est .
Bayesian probabilityBayesian probability (ˈbeɪziən or ˈbeɪʒən ) is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with hypotheses; that is, with propositions whose truth or falsity is unknown.
Inférence (logique)L’inférence est un mouvement de la pensée qui permet de passer d'une ou plusieurs assertions, des énoncés ou propositions affirmés comme vrais, appelés prémisses, à une nouvelle assertion qui en est la conclusion. Étymologiquement, le mot inférence signifie « reporter ». En théorie, l'inférence est traditionnellement divisée en déduction et induction, une distinction qui, en Europe, remonte au moins à Aristote ( avant Jésus-Christ). On distingue les inférences immédiates des inférences médiates telles que déductives, inductives et abductives.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Méthode de Monte-Carlo par chaînes de MarkovLes méthodes de Monte-Carlo par chaînes de Markov, ou méthodes MCMC pour Markov chain Monte Carlo en anglais, sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes de Monte-Carlo se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner. Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (algorithme de Metropolis-Hastings, échantillonnage de Gibbs), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive).
Expectation of privacy (United States)In United States constitutional law, expectation of privacy is a legal test which is crucial in defining the scope of the applicability of the privacy protections of the Fourth Amendment to the U.S. Constitution. It is related to, but is not the same as, a right to privacy, a much broader concept which is found in many legal systems (see privacy law). Overall, expectations of privacy can be subjective or objective.
Internet privacyInternet privacy involves the right or mandate of personal privacy concerning the storage, re-purposing, provision to third parties, and display of information pertaining to oneself via the Internet. Internet privacy is a subset of data privacy. Privacy concerns have been articulated from the beginnings of large-scale computer sharing and especially relate to mass surveillance enabled by the emergence of computer technologies. Privacy can entail either personally identifiable information (PII) or non-PII information such as a site visitor's behaviour on a website.