Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Learning to recognize, predict, and generate spatio-temporal patterns and sequences of spikes is a key feature of nervous systems, and essential for solving basic tasks like localization and navigation. How this can be done by a spiking network, however, remains an open question. Here we present a STDP-based framework extending a previous model [1], that can simultaneously learn to abstract hidden states from sensory inputs and learn transition probabilities [2] between these states in recurrent connection weights.
Silvestro Micera, Simone Romeni, Bianca Ziliotto