Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future
Publications associées (37)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
At the current stage, Brain-Computer Interfaces (BCIs) represent a promising technology for communication and control of assistive devices as well as for the clinical motor rehabilitation after a stroke. Current BCI systems may be divided in two main typol ...
This chapter provides an overview of the functionality and the underlying principles of the brain-computer interfaces (BCI) developed by the Chair in Non-Invasive Brain-Machine Interface (CNBI) of the Swiss Federal Institute of Technology (EPFL), as well a ...
Brain-Machine Interfaces (BMI) allow manipulation of external devices and computers directly with brain activity without involvement of overt motor actions. The neurophysiological principles of such robotic brain devices and BMIs follow Hebbian learning ru ...
Recent works have explored the use of brain signals to directly control virtual and robotic agents in sequential tasks. So far in such brain-computer interfaces (BCI), an explicit calibration phase was required to build a decoder that translates raw electr ...
The articles in this special issue focus on brain-computer interfacing. The papers are dedicated to this growing and diversifying research enterprise, and features important review articles as well as some important current examples of research in this are ...
Brain-machine interfaces (BMI) have largely been demonstrated in laboratory conditions involving, mainly, healthy users. We have recently carried out a series of studies with a substantial number of motor-disabled end-users operating different brain-contro ...
Brain-machine interfaces (BMI) usually decode movement parameters from cortical activity to control neuroprostheses. This requires subjects to learn to modulate their brain activity to convey all necessary information, thus imposing natural limits on the c ...
This chapter introduces the filed of brain-computer interfaces (BCI), also called brain-machine interfaces (BMI), which has seen impressive achievements over the past few years. A BCI monitors the user’s brain activity, extracts specific features from the ...
Neurotechnology is the application of scientific knowledge to the practical purpose of understanding, interacting and/or repairing the brain or, in a broader sense, the nervous system. The development of novel approaches to decode functional information fr ...
As a result of improved understanding of brain mechanisms as well as unprecedented technical advancement in neural recording methods and computer technology, it is now possible to translate large-scale brain signals into movement intentions in real time. S ...