Search engineA search engine is a software system that finds web pages that match a web search. They search the World Wide Web in a systematic way for particular information specified in a textual web search query. The search results are generally presented in a line of results, often referred to as search engine results pages (SERPs). The information may be a mix of hyperlinks to web pages, images, videos, infographics, articles, and other types of files. Some search engines also mine data available in databases or open directories.
Concept searchA concept search (or conceptual search) is an automated information retrieval method that is used to search electronically stored unstructured text (for example, digital archives, email, scientific literature, etc.) for information that is conceptually similar to the information provided in a search query. In other words, the ideas expressed in the information retrieved in response to a concept search query are relevant to the ideas contained in the text of the query.
Système de recommandationLes systèmes de recommandation sont une forme spécifique de filtrage de l'information (SI) visant à présenter les éléments d'information (films, musique, livres, news, images, pages Web, etc) qui sont susceptibles d'intéresser l'utilisateur. Généralement, un système de recommandation permet de comparer le profil d'un utilisateur à certaines caractéristiques de référence, et cherche à prédire l'« avis » que donnerait un utilisateur.
Google (moteur de recherche)Google est un moteur de recherche gratuit et libre d'accès sur le World Wide Web, ayant donné son nom à la société Google. C'est aujourd'hui le moteur de recherche et le site web le plus visité au monde : 90 % des internautes l'utilisaient en 2018. Le nom Google vient du mot Gogol, nom donné au nombre . Ce nombre a été choisi pour évoquer la capacité de Google à traiter une très grande quantité de données.
Plongement lexicalLe plongement lexical (« word embedding » en anglais) est une méthode d'apprentissage d'une représentation de mots utilisée notamment en traitement automatique des langues. Le terme devrait plutôt être rendu par vectorisation de mots pour correspondre plus proprement à cette méthode. Cette technique permet de représenter chaque mot d'un dictionnaire par un vecteur de nombres réels. Cette nouvelle représentation a ceci de particulier que les mots apparaissant dans des contextes similaires possèdent des vecteurs correspondants qui sont relativement proches.
Indexation automatique de documentsL’indexation automatique de documents est un domaine de l'informatique et des sciences de l'information et des bibliothèques qui utilise des méthodes logicielles pour organiser un ensemble de documents et faciliter ultérieurement la recherche de contenu dans cette collection. La multiplicité des types de documents (textuels, medias, audiovisuels, Web) donne lieu à des approches très différentes, notamment en termes de représentation des données.
Similarité cosinusLa similarité cosinus donne la similarité de deux vecteurs à n dimensions en déterminant le cosinus de leur angle. Ce score est fréquemment utilisée en fouille de textes. Soit deux vecteurs A et B, le cosinus de leur angle θ s'obtient en prenant leur produit scalaire divisé par le produit de leurs normes : La valeur d'un cosinus, donc celle calculée ici pour cos θ, est comprise dans l'intervalle [-1,1]. La valeur de -1 indique des vecteurs opposés, la valeur de 0 des vecteurs indépendants (orthogonaux) et la valeur de 1 des vecteurs colinéaires de coefficient positif.
Complete topological vector spaceIn functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by or , which are generalizations of , while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces.
Word2vecEn intelligence artificielle et en apprentissage machine, Word2vec est un groupe de modèles utilisé pour le plongement lexical (word embedding). Ces modèles ont été développés par une équipe de recherche chez Google sous la direction de . Ce sont des réseaux de neurones artificiels à deux couches entraînés pour reconstruire le contexte linguistique des mots. La méthode est implémentée dans la bibliothèque Python Gensim. Deux architectures ont été initialement proposées pour apprendre les Word2vec, le modèle de sacs de mots continus (CBOW: continuous bag of words) et le modèle skip-gram.
Partie bornée d'un espace vectoriel topologiqueEn analyse fonctionnelle et dans des domaines mathématiques reliés, une partie d'un espace vectoriel topologique est dite bornée (au sens de von Neumann) si tout voisinage du vecteur nul peut être dilaté de manière à contenir cette partie. Ce concept a été introduit par John von Neumann et Andreï Kolmogorov en 1935. Les parties bornées sont un moyen naturel de définir les (localement convexes) sur les deux espaces vectoriels d'une paire duale.