Groupe divisibleEn mathématiques, et plus particulièrement en théorie des groupes, un groupe abélien divisible est un groupe abélien G tel que, pour tout nombre naturel n ≥ 1, on ait (en notation additive) G = nG. Ceci revient à dire que pour tout élément x de G et tout nombre naturel n ≥ 1, il existe au moins un élément y de G tel que x = ny. On peut étendre cette définition aux groupes non abéliens, un groupe divisible étant un groupe dans lequel (en notation multiplicative) tout élément est n-ième puissance, quel que soit l'entier naturel n ≥ 1.
Catégorie groupoïdeEn mathématiques, et plus particulièrement en théorie des catégories et en topologie algébrique, la notion de groupoïde généralise à la fois les notions de groupe, de relation d'équivalence sur un ensemble, et de l'action d'un groupe sur un ensemble. Elle a été initialement développée par Heinrich Brandt en 1927. Les groupoïdes sont souvent utilisés pour représenter certaines informations sur des objets topologiques ou géométriques comme les variétés. Un groupoïde est une petite catégorie dans laquelle tout morphisme est un isomorphisme.
System context diagramA system context diagram in engineering is a diagram that defines the boundary between the system, or part of a system, and its environment, showing the entities that interact with it. This diagram is a high level view of a system. It is similar to a block diagram. System context diagrams show a system, as a whole and its inputs and outputs from/to external factors. According to Kossiakoff and Sweet (2011): System Context Diagrams ... represent all external entities that may interact with a system ...
Théorème de la dimension pour les espaces vectorielsEn mathématiques, le théorème de la dimension pour les espaces vectoriels énonce que deux bases quelconques d'un même espace vectoriel ont même cardinalité. Joint au théorème de la base incomplète qui assure l'existence de bases, il permet de définir la dimension d'un espace vectoriel comme le cardinal (fini ou infini) commun à toutes ses bases. (Donc par symétrie, deux bases quelconques ont même cardinal.) Soient L libre et G génératrice de E, montrons que |L| ≤ |G|. Notons n = |G|.