Codage neuronalLe codage neuronal désigne, en neurosciences, la relation hypothétique entre le stimulus et les réponses neuronales individuelles ou globales. C'est une théorie sur l'activité électrique du système nerveux, selon laquelle les informations, par exemple sensorielles, numériques ou analogiques, sont représentées dans le cerveau par des réseaux de neurones. Le codage neuronal est lié aux concepts du souvenir, de l'association et de la mémoire sensorielle.
Rythme cérébralUn rythme cérébral (appelé aussi activité neuro-électrique) désigne l'oscillation électromagnétique émise par le cerveau des êtres humains, mais également de tout être vivant. Le cortex frontal qui permet la cognition, la logique et le raisonnement est composé de neurones qui sont reliés entre eux par des synapses permettant la neurotransmission. Mesurables en volt et en hertz, ces ondes sont de très faible amplitude : de l'ordre du microvolt (chez l'être humain), elles ne suivent pas toujours une sinusoïde régulière.
Système sensorielUn système sensoriel est une partie du système nerveux responsable de la sensation. Il regroupe les récepteurs sensoriels, les voies nerveuses, et les parties du cerveau responsables du traitement de l'information sensorielle. L'ensemble des systèmes sensoriels se divisent en sensibilité générale ou somesthésie et en sens dits spécifiques : la vision, l'odorat, le goût, l'ouïe et le toucher. Il existe sept sens : les cinq sens vu ci-dessus (vision, odorat, goût, ouïe et toucher), ainsi que le système vestibulaire et le système proprioceptif.
Récepteur (cellule)thumb|Cônes et bâtonnets de la rétine en microscopie électronique (fausses couleurs). Les neurones récepteurs (ou sensoriels) constituent le premier niveau cellulaire du système nerveux de la perception. Ils transduisent des signaux physiques (lumière, son, température, pression, tension mécanique...) en signaux chimiques (neurotransmetteurs) transmis à un neurone postsynaptique qui convertira le message en signal nerveux transmis sous forme de trains de potentiel d'action. photorécepteur (vision) bâtonnet
Réseau de neurones à impulsionsLes réseaux de neurones à impulsions (SNNs : Spiking Neural Networks, en anglais) sont un raffinement des réseaux de neurones artificiels (ANNs : Artificial Neural Networks, en anglais) où l’échange entre neurones repose sur l’intégration des impulsions et la redescente de l’activation, à l’instar des neurones naturels. L’encodage est donc temporel et binaire. Le caractère binaire pose une difficulté de continuité au sens mathématique (cela empêche notamment l’utilisation des techniques de rétropropagation des coefficients - telle que la descente de gradient - utilisées classiquement dans les méthodes d'apprentissage).
Trouble de l'intégration sensorielleLe trouble du traitement sensoriel (ou SPD, pour Sensory processing disorder, aussi anciennement dénommé "dysfonctionnement de l'intégration sensorielle") désigne un trouble correspondant à une difficulté ou à une incapacité du système nerveux central à traiter adéquatement les flux d'informations sensorielles arrivant dans le cerveau, lequel ne peut alors fournir de réponses appropriées aux exigences de l'environnement.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Modèles du neurone biologiquevignette|390x390px|Fig. 1. Dendrites, soma et axone myélinisé, avec un flux de signal des entrées aux dendrites aux sorties aux bornes des axones. Le signal est une courte impulsion électrique appelée potentiel d'action ou impulsion. vignette|Figure 2. Évolution du potentiel postsynaptique lors d'une impulsion. L'amplitude et la forme exacte de la tension peut varier selon la technique expérimentale utilisée pour acquérir le signal.
Voie neuronaleUne voie neuronale connecte des parties du système nerveux et correspond habituellement à des faisceaux de neurones allongés isolés par gaine de myéline, et dont les regroupements constituent la matière blanche. Les voies neuronales servent à la connexion de zones relativement éloignées du cerveau ou du système nerveux, comparé aux communications locales de la matière grise. Les premières voies neuronales qui furent nommées sont visibles à l’œil nu, même dans un cerveau mal conservé, et furent mentionnées par les anatomistes de la renaissance qui travaillaient sur des cadavres.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.