"There is more virus in us than us in us". John Coffin's famous sentence illustrates that particular nucleic acid sequences related to exogenous viruses, called retrotransposons, constitute almost half of the human genome and largely exceeds the amount of protein-coding DNA (section 1.4). At the beginning of the past century, biologists realized the size of the genomes of various eukaryotes did not correlate with the level of complexity of these species. In extreme cases, certain species such as the fish L.paradoxa had 30-times more genomic DNA than do primates. In 1980, Francis Crick and Carmen Sapienza independently postulated that part of this once-called "junk DNA" must stem from self-replicating units, categorized as "selfish DNA" to distinguish them from more "altruistic" cellular genes. Indeed, while genes amplify in a population because of the selective advantage they confer to their host, the selfish DNA amplifies without making any contribution to the host phenotype and survives rather as a not-too-deleterious parasite. In early 2000's, the accomplishment of the human genome sequencing projects gave formal credence to Crick's and Sapienza's initial hypothesis. Retrotransposons replicate in the genome of their host by a copy-and-paste mechanism. Accordingly, any new retrotransposition event causes a genetic alteration potentially detrimental to the host. On an evolutionary perspective however, accumulation of retrotransposon-derived sequences can be beneficial to the species after these once "selfish" elements become "domesticated" to deserve more physiological roles. In human or mouse for instance, retrotransposons are known to cover a large spectrum of cellular functions, from gene regulation to antiviral defense (section 1.6). In order to maintain under tight control the balance between the good and adverse effects of retroelements, eukaryotes have evolved cellular defenses aimed at inhibiting the replication of such elements (section 1.7). Gene silencing by DNA methylation is a mechanism widely used in plants, fungi or vertebrates to control the expression of self-replicating elements. For instance in mammals, specific KRAB-zinc finger proteins can target retroviral-derived sequences and mediate their transcriptional silencing (section 3). The first aim of this study was to characterize the sensitivity of retroviruses to KRAB-mediated epigenetic silencing in varied chromosomal contexts (section 5). Since some retroviruses like HIV favor integration within transcriptionally active regions, these viruses may escape blockade by integrating chromosomal area refractory to epigenetic silencing. We found that instead, KRAB-mediated repression mechanism was not dependent upon integration site of a retroviral vector, hence the emergence of viruses escaping KRAB-mediated repression would be unlikely. Mammalian cells are also able to control the replication of retrotransposons at a post-transcriptional level via the APOBEC3 family of cytidine d
Didier Trono, Evaristo Jose Planet Letschert, Wayo Matsushima
Tamar Kohn, Xavier Fernandez Cassi