Simply typed lambda calculusThe simply typed lambda calculus (), a form of type theory, is a typed interpretation of the lambda calculus with only one type constructor () that builds function types. It is the canonical and simplest example of a typed lambda calculus. The simply typed lambda calculus was originally introduced by Alonzo Church in 1940 as an attempt to avoid paradoxical use of the untyped lambda calculus. The term simple type is also used to refer extensions of the simply typed lambda calculus such as products, coproducts or natural numbers (System T) or even full recursion (like PCF).
Lambda-calculLe lambda-calcul (ou λ-calcul) est un système formel inventé par Alonzo Church dans les années 1930, qui fonde les concepts de fonction et d'application. On y manipule des expressions appelées λ-expressions, où la lettre grecque λ est utilisée pour lier une variable. Par exemple, si M est une λ-expression, λx.M est aussi une λ-expression et représente la fonction qui à x associe M. Le λ-calcul a été le premier formalisme pour définir et caractériser les fonctions récursives : il a donc une grande importance dans la théorie de la calculabilité, à l'égal des machines de Turing et du modèle de Herbrand-Gödel.
Type dépendantEn Informatique et en Logique, un type dépendant est un type qui peut dépendre d'une valeur définie dans le langage typé. Les langages Agda et Gallina (de l'assistant de preuve Coq) sont des exemples de langages à type dépendant. Les types dépendants permettent par exemple de définir le type des listes à n éléments. Voici un exemple en Coq. Inductive Vect (A: Type): nat -> Type := | nil: Vect A 0 | cons (n: nat) (x: A) (t: Vect A n): Vect A (S n).
Typed lambda calculusA typed lambda calculus is a typed formalism that uses the lambda-symbol () to denote anonymous function abstraction. In this context, types are usually objects of a syntactic nature that are assigned to lambda terms; the exact nature of a type depends on the calculus considered (see kinds below). From a certain point of view, typed lambda calculi can be seen as refinements of the untyped lambda calculus, but from another point of view, they can also be considered the more fundamental theory and untyped lambda calculus a special case with only one type.
Scala (langage)Scala est un langage de programmation multi-paradigme conçu à l'École polytechnique fédérale de Lausanne (EPFL) pour exprimer les modèles de programmation courants dans une forme concise et élégante. Son nom vient de l'anglais Scalable language qui signifie à peu près « langage adaptable » ou « langage qui peut être mis à l'échelle ». Il peut en effet être vu comme un métalangage. Scala intègre les paradigmes de programmation orientée objet et de programmation fonctionnelle, avec un typage statique.
F SharpF# est un langage de programmation fonctionnel, impératif et orienté objet pour la plate-forme .NET. F# est développé par Microsoft Research et son noyau est dérivé du langage OCaml, avec lequel il est fortement compatible. Ces deux langages de programmation font partie de la même famille que les langages ML. Ce langage a été conçu spécifiquement pour la plate-forme .NET, donc fortement orienté-objet. Depuis novembre 2010, Microsoft a mis à la disposition de tous les bibliothèques core et son compilateur F#, sous la licence Apache 2.
Type systemIn computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type (for example, integer, floating point, string) to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term.
Système FLe est un formalisme logique qui permet d'exprimer de façon très riche et très rigoureuse des fonctions et d'y démontrer formellement des propriétés difficiles. Plus précisément, le (également connu sous le nom de lambda-calcul polymorphe ou de lambda-calcul du second ordre) est une extension du lambda-calcul simplement typé introduite indépendamment par le logicien Jean-Yves Girard et par l'informaticien John C. Reynolds. Ce système se distingue du lambda-calcul simplement typé par l'existence d'une quantification universelle sur les types qui permet d'exprimer du polymorphisme.
Bounds checkingIn computer programming, bounds checking is any method of detecting whether a variable is within some bounds before it is used. It is usually used to ensure that a number fits into a given type (range checking), or that a variable being used as an array index is within the bounds of the array (index checking). A failed bounds check usually results in the generation of some sort of exception signal. As performing bounds checking during each use can be time-consuming, it is not always done.
Lambda cubethumb|Le lambda-cube. Initialement proposé par Henk Barendregt, le -cube permet de visualiser les différentes dimensions pour lesquelles le calcul des constructions apporte une généralisation par rapport au lambda-calcul simplement typé où un terme ne peut dépendre que d'un autre terme. Chaque axe représente une nouvelle forme d'abstraction : Terme dépendant de type : le polymorphisme ; Type dépendant de type : présence d'opérateurs de types ; Type dépendant de terme. Catégorie:Calculabilité Catégorie:Théor