Coloring Triangle-Free Rectangular Frame Intersection Graphs with O(loglogn) Colors
Publications associées (45)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Given a graph G with nonnegative node labels w, a multiset of stable sets S_1,...,S_k\subseteq V(G) such that each vertex v \in V(G) is contained in w(v) many of these stable sets is called a weighted coloring. The weighted coloring number \chi_w(G) is the ...
The main goal of this paper is to formalize and explore a connection between chromatic properties of graphs defined by geometric representations and competitivity analysis of on-line algorithms. This connection became apparent after the recent construction ...
Several classical constructions illustrate the fact that the chromatic number of a graph may be arbitrarily large compared to its clique number. However, until very recently no such construction was known for intersection graphs of geometric objects in the ...
In the 1970s Erdos asked whether the chromatic number of intersection graphs of line segments in the plane is bounded by a function of their clique number. We show the answer is no. Specifically, for each positive integer k we construct a triangle-free fam ...
A set S of n points is 2-color universal for a graph G on n vertices if for every proper 2-coloring of G and for every 2-coloring of S with the same sizes of color classes as G has, G is straight-line embeddable on S. We show that the so-called double chai ...
The intersection graph of a collection C of sets is the graph on the vertex set C, in which C-1 . C-2 is an element of C are joined by an edge if and only if C-1 boolean AND C-2 not equal empty set. Erdos conjectured that the chromatic number of triangle-f ...
The split-coloring problem is a generalized vertex coloring problem where we partition the vertices into a minimum number of split graphs. In this paper, we study some notions which are extensively studied for the usual vertex coloring and the cocoloring p ...
A family of sets in the plane is simple if the intersection of any subfamily is arc-connected, and it is pierced by a line L if the intersection of any member with L is a nonempty segment. It is proved that the intersection graphs of simple families of com ...
An intersection graph of curves in the plane is called a string graph. Matousek almost completely settled a conjecture of the authors by showing that every string graph with m edges admits a vertex separator of size O(root m log m). In the present note, th ...
We deal with some generalizations of the graph coloring problem on classes of perfect graphs. Namely we consider the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand) ...