Electrical impedance spectroscopy measurements were performed in post-mortem mice brains using a flexible probe with an embedded micrometric electrode array. Combined with a peak resistance frequency method this allowed obtaining intrinsic resistivity values of brain tissues and structures with submilli- metric resolution. Reproducible resistivity measurements are reported, which allows the resistivity in the cortex, ventricle, fiber tracts, thalamus and basal ganglia to be differentiated. Measurements of brain slices revealed resistivity profiles correlated with the local density of cell bodies hence allowing to discriminate between the different cortical layers. Finally, impedance measurements were performed on a model of cauterized mouse brain evidencing the possibility to measure the spatial extent and the degree of the tissue denaturation due to the cauterization.
Jean-Philippe Thiran, Elda Fischi Gomez, Vanessa Siffredi
Matthias Wolf, Henry Markram, Kathryn Hess Bellwald, Felix Schürmann, Eilif Benjamin Muller, Srikanth Ramaswamy, Michael Reimann, Daniel Keller, Werner Alfons Hilda Van Geit, James Gonzalo King, Lida Kanari, Pramod Shivaji Kumbhar, Alexis Arnaudon, Ying Shi, Jean-Denis Georges Emile Courcol, Armando Romani, András Ecker, Michael Emiel Gevaert, Cyrille Pierre Henri Favreau, Vishal Sood, Sirio Bolaños Puchet, James Bryden Isbister, Judit Planas Carbonell, Daniela Egas Santander, Christoph Pokorny, Adrien Michel Achille Devresse, Gianluca Ficarelli, Hugo Thabo Dictus, Janis Lazovskis, Juan Bautista Hernando Vieites, Huanxiang Lu, Liesbeth Maria L Vanherpe, Ran Levi, Joni Henrikki Herttuainen, Samuel Lieven D. Lapere, Juan Luis Riquelme Roman, Thomas Brice Delemontex, Nicolas René Jean Ninin, Alexander Dietz, Benoît Jean-Albert Coste