Jump-Sparse and Sparse Recovery Using Potts Functionals
Publications associées (77)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Recent results in compressed sensing or compressive sampling suggest that a relatively small set of measurements taken as the inner product with universal random measurement vectors can well represent a source that is sparse in some fixed basis. By adaptin ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2007
Natural images are often modeled through piecewise-smooth regions. Region edges, which correspond to the contours of the objects, become, in this model, the main information of the signal. Contours have the property of being smooth functions along the dire ...
This paper proposes a rate-distortion optimal a posteriori quantization scheme for Matching Pursuit coefficients. The a posteriori quantization applies to a Matching Pursuit expansion that has been generated off-line, and cannot benefit of any feedback loo ...
This paper studies the problem of sparse signal approximation over redundant dictionaries. Our attention is focused on the minimization of a cost function where the error is measured by using the L1 norm, giving thus less importance to outliers. We show a ...
A sparse classifier is guaranteed to generalize better than a denser one, given they perform identical on the training set. However, methods like Support Vector Machine, even if they produce relatively sparse models, are known to scale linearly as the numb ...
In this report we study the problem of sparse signal approximation over redundant dictionaries. We focus our attention on the minimization of a cost function where the error is measured using a l1 norm. We show a constructive equivalence between this minim ...
This paper studies quantization error in the context of Matching Pursuit coded streams and proposes a new coefficient quantization scheme taking benefit of the Matching Pursuit properties. The coefficients energy in Matching Pursuit indeed decreases with t ...