turboTDDFT 2.0 Hybrid functionals and new algorithms within time-dependent density-functional perturbation theory
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We present a new method to model spin-wave excitations in magnetic solids, based on the Liouville-Lanczos approach to time-dependent density functional perturbation theory. This method avoids computationally expensive sums over empty states and naturally d ...
The fast and reliable determination of wave functions and electron densities of macromolecules has been one of the goals of theoretical chemistry for a long time, and in this context, several linear scaling techniques have been successfully devised over th ...
The simulation of condensed matter in first principles Molecular Dynamics (FPMD) heavily relies on Kohn-Sham Density Functional Theory (KS-DFT) calculations. The accuracy of such simulations is governed by the reliability of the underlying potential energy ...
The cluster perturbation series, CPS(D), for coupled cluster singles and doubles excitation energies is considered. It is demonstrated that the second-order model CPS(D-2) is identical to the configuration interaction singles with perturbative doubles, CIS ...
We present a detailed study of the excited state properties of 5-benzyluracil (5BU) in the gas phase and in implicit solvent using different electronic structure approaches ranging from time-dependent density functional theory in the linear response regime ...
Challenging ground and excited state problems in the chemistry of common organic chromophores are investigated with state-of-the-art quantum chemical methods. We present a comprehensive excited state molecular dynamics analysis of (a) fundamental building ...
We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree-Fock and Kohn-Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedd ...
The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even th ...
The overarching objective of this thesis is extending and adapting the set of computational tools available for describing molecular precursors of organic semiconductors. The research presented within develops adhering to three principle goals: (1) provide ...
The description of low-lying ππ* states of linear acenes by standard electronic structure methods is known to be challenging. Here, we broaden the framework of this problem by considering a set of fused heteroaromatic rings and demonstrate that standard el ...