turboTDDFT 2.0 Hybrid functionals and new algorithms within time-dependent density-functional perturbation theory
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The overarching objective of this thesis is extending and adapting the set of computational tools available for describing molecular precursors of organic semiconductors. The research presented within develops adhering to three principle goals: (1) provide ...
We present a new method to model spin-wave excitations in magnetic solids, based on the Liouville-Lanczos approach to time-dependent density functional perturbation theory. This method avoids computationally expensive sums over empty states and naturally d ...
We present a detailed study of the excited state properties of 5-benzyluracil (5BU) in the gas phase and in implicit solvent using different electronic structure approaches ranging from time-dependent density functional theory in the linear response regime ...
Challenging ground and excited state problems in the chemistry of common organic chromophores are investigated with state-of-the-art quantum chemical methods. We present a comprehensive excited state molecular dynamics analysis of (a) fundamental building ...
The cluster perturbation series, CPS(D), for coupled cluster singles and doubles excitation energies is considered. It is demonstrated that the second-order model CPS(D-2) is identical to the configuration interaction singles with perturbative doubles, CIS ...
The simulation of condensed matter in first principles Molecular Dynamics (FPMD) heavily relies on Kohn-Sham Density Functional Theory (KS-DFT) calculations. The accuracy of such simulations is governed by the reliability of the underlying potential energy ...
The fast and reliable determination of wave functions and electron densities of macromolecules has been one of the goals of theoretical chemistry for a long time, and in this context, several linear scaling techniques have been successfully devised over th ...
We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree-Fock and Kohn-Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedd ...
The description of low-lying ππ* states of linear acenes by standard electronic structure methods is known to be challenging. Here, we broaden the framework of this problem by considering a set of fused heteroaromatic rings and demonstrate that standard el ...
The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even th ...