RentabilitéLa rentabilité est le rapport entre un revenu obtenu ou prévu et les ressources employées pour l'obtenir. La notion s'applique notamment aux entreprises, mais aussi à tout autre investissement. La rentabilité rétrospective est le rapport entre un résultat comptable et les moyens en passifs mis en œuvre pour l'obtenir. La rentabilité prévisionnelle est le rapport entre un gain de trésorerie projeté et la valeur d'un investissement nécessaire pour générer ce gain.
Algorithme du gradientLalgorithme du gradient, aussi appelé algorithme de descente de gradient, désigne un algorithme d'optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des n-uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué dans la direction opposée au gradient, de manière à faire décroître la fonction.
Dualité de SerreEn géométrie algébrique, la dualité de Serre est une dualité pour la cohomologie cohérente de variétés algébriques, démontrée par Jean-Pierre Serre. La version originale s'applique aux fibrés vectoriels sur une variété projective lisse, mais Alexander Grothendieck la généralise largement. Sur une variété de dimension n, le théorème énonce l'isomorphisme d'un groupe de cohomologie avec l'espace dual d'un autre, le . La dualité de Serre est l'analogue pour la cohomologie cohérente de la dualité de Poincaré en topologie.
Méthode du gradient conjuguévignette|Illustration de la méthode du gradient conjugué. En analyse numérique, la méthode du gradient conjugué est un algorithme pour résoudre des systèmes d'équations linéaires dont la matrice est symétrique définie positive. Cette méthode, imaginée en 1950 simultanément par Cornelius Lanczos, Eduard Stiefel et Magnus Hestenes, est une méthode itérative qui converge en un nombre fini d'itérations (au plus égal à la dimension du système linéaire).
Taux sans risqueUn taux sans risque dans une devise et pour une période particulière est le taux d'intérêt constaté sur le marché des emprunts d'État de pays considérés solvables et d'organisations intergouvernementales pour la même devise et la même période. On désigne donc ainsi l'absence théorique de risque de crédit, et non une quelconque absence de risque de taux, qui lui demeure bien présent. Il est toutefois à noter qu'un État peut faire faillite. Comme pour tous les taux d'intérêt, il convient de préciser quelles bases et conventions de calcul s'appliquent.