Algebraic surfaceIn mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two).
Tight bindingIn solid-state physics, the tight-binding model (or TB model) is an approach to the calculation of electronic band structure using an approximate set of wave functions based upon superposition of wave functions for isolated atoms located at each atomic site. The method is closely related to the LCAO method (linear combination of atomic orbitals method) used in chemistry. Tight-binding models are applied to a wide variety of solids.
Code de KitaevLe code de Kitaev (aussi appelé le « code torique ») est un code de correction d'erreurs quantiques topologique, qui peut être défini par le formalisme des codes stabilisateurs sur un réseau carré 2D Ce code fait partie de la famille des codes de surfaces et il possède des conditions aux bords périodiques, ce qui forme donc un tore. Pour le code de Kitaev, il existe 2 types de stabilisateurs, les stabilisateurs de plaquettes et de sites. On peut interpréter ce code comme étant un ensemble de spin-1/2 (qubits physiques) placés sur chaque arête d'un réseau carré 2D.
Q10 (temperature coefficient)DISPLAYTITLE:Q10 (temperature coefficient) The Q10 temperature coefficient is a measure of temperature sensitivity based on the chemical reactions. The Q10 is calculated as: where; R is the rate T is the temperature in Celsius degrees or kelvin. Rewriting this equation, the assumption behind Q10 is that the reaction rate R depends exponentially on temperature: Q10 is a unitless quantity, as it is the factor by which a rate changes, and is a useful way to express the temperature dependence of a process.
Ruban de Möbiusvignette|Réalisation à partir d'une bande de papier. En topologie, le ruban de Möbius (aussi appelé bande de Möbius ou boucle de Möbius) est une surface compacte dont le bord est homéomorphe à un cercle. Autrement dit, il ne possède qu'une seule face (et un seul bord) contrairement à un ruban classique qui en possède deux. La surface a la particularité d'être réglée et non orientable. Elle a été décrite indépendamment en 1858 par les mathématiciens August Ferdinand Möbius (1790-1868) et Johann Benedict Listing (1808-1882).