vignette|Réalisation à partir d'une bande de papier.
En topologie, le ruban de Möbius (aussi appelé bande de Möbius ou boucle de Möbius) est une surface compacte dont le bord est homéomorphe à un cercle. Autrement dit, il ne possède qu'une seule face (et un seul bord) contrairement à un ruban classique qui en possède deux. La surface a la particularité d'être réglée et non orientable. Elle a été décrite indépendamment en 1858 par les mathématiciens August Ferdinand Möbius (1790-1868) et Johann Benedict Listing (1808-1882). Le nom du premier fut retenu grâce à un mémoire présenté à l'Académie des sciences à Paris. On trouve également les dénominations de « bande », « anneau » ou « ceinture » de Möbius, et on écrit parfois « Mœbius » ou « Moebius ».
Il est facile de visualiser la bande de Möbius dans l'espace : un modèle simple se réalise en faisant subir une torsion d'un demi-tour à une longue bande de papier, puis en collant les deux extrémités, créant un ruban sans fin n'ayant ni intérieur ni extérieur.
bande de moebius.png|Confection du ruban.
Fichier:MöbiusStripAsSquare.svg|Schématisation du montage : recoller les deux flèches en respectant le sens.
Le ruban de Möbius peut être engendré par un segment pivotant dont le centre décrit un cercle fixe. Un paramétrage correspondant est
vignette|Ruban de Möbius.
ou l'ensemble des solutions de l'équation suivante :
Les courbes v = v0, t variant seul, sont bien des segments, reliant à vitesse uniforme le point v = v0, t = –1 et le point v = v0, t = 1. Ce segment est donc de longueur 2.
La courbe t = 0 est un cercle de diamètre 2 dans le plan horizontal ; elle représente la trajectoire du centre des segments. L'angle que fait le segment avec la direction horizontale est v0. Lorsque le centre a fait un tour complet sur le cercle horizontal (ajout de π à la variable v), le segment a fait un demi-tour seulement. Ce qui provoque le raccordement par exemple du point t = 1, v = π avec t = –1, v = 0.
Le bord du ruban est donné par la courbe t = 1 ou t = –1.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
En mathématiques, et plus précisément en géométrie et en topologie algébrique, la caractéristique d'Euler — ou d'Euler-Poincaré — est un invariant numérique, un nombre qui décrit un aspect d'une forme d'un espace topologique ou de la structure de cet espace. Elle est communément notée χ. La caractéristique d'Euler fut définie à l'origine pour les polyèdres et fut utilisée pour démontrer divers théorèmes les concernant, incluant la classification des solides de Platon.
En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
vignette|Modélisation d'un tore Un tore est un solide géométrique représentant un tube courbé refermé sur lui-même. Le terme « tore » comporte différentes acceptions plus spécifiques selon le contexte : en ingénierie ou en géométrie élémentaire, un tore est un solide de révolution de l'espace obtenu à partir d'un cercle, ou bien sa surface. Une chambre à air, une bouée, certains joints d'étanchéité ou encore certains beignets (les donuts nord-américains) ont ainsi une forme plus ou moins torique ; en architecture, un tore correspond à une moulure ronde, semi-cylindrique.
In this paper, we propose a new variety of strong field confinement, ultra-compact size, easy-to-integrate spoof surface plasmon polariton (SSPP) waveguides based on double-sided parallel-strip lines (DSPSL), which are formed by etching opposite spiral gro ...
In this note we prove an explicit formula for the lower semicontinuous envelope of some functionals defined on real polyhedral chains. More precisely, denoting by H:R→[0,∞) an even, subadditive, and lower semicontinuous function with H(0)=0, and by ΦH the ...
Graphene nanoribbons (GNRs) - one-dimensional strips of graphene - share many of the exciting properties of graphene, such as ballistic transport over micron dimensions, strength and flexibility, but more importantly, they exhibit a tunable band gap that d ...