Économie hydrogèneLéconomie hydrogène ou économie de l'hydrogène est le modèle économique dans lequel le dihydrogène (de formule chimique ) servirait de vecteur d'énergie commun pour mutualiser les différents types de production d’énergie et pallier le problème de l’intermittence des énergies renouvelables. Ce principe est envisagé pour la première fois par Jules Verne en 1874, puis de façon plus détaillée par John Burdon Sanderson Haldane en 1923, et l'Allemagne nazie l'utilise pour produire des combustibles synthétiques à partir du charbon.
Électrolyse à oxyde solidevignette|Module expérimental de deux piles de d'électrolyse visibles au centre, installé avec ses alimentations et ses conduits. L'électrolyse à oxyde solide est un procédé d'électrolyse de l'eau ou du dioxyde de carbone à l'aide d'électrolytes constitués d'oxydes solides, notamment de céramiques, afin de produire de l'oxygène et de l'hydrogène ou du monoxyde de carbone CO, selon les réactions et respectivement. La production d'hydrogène par cette voie est intéressante car d'empreinte écologique réduite et offrant un moyen de stockage de l'énergie alternatif aux accumulateurs.
Catalysevignette|Intérieur du musée de la catalyse à Widnes en Angleterre. En chimie, la catalyse (du grec ancien : , « détacher ») se réfère à l'accélération ou la réorientation de la cinétique de réaction au moyen d'un catalyseur, et dans certains cas à la sélectivité pour diriger la réaction dans un sens privilégié (réaction concurrente, production d'un produit plutôt qu'un autre). Le catalyseur est utilisé en quantité beaucoup plus faible que les produits réactifs. Il n'apparait pas en général dans le bilan de réaction, donc pas dans son équation globale.
Solution tamponEn chimie, une solution tampon est une solution qui maintient approximativement le même pH malgré l'addition de petites quantités d'un acide ou d'une base, ou malgré une dilution. Si l'un de ces trois critères n'est pas vérifié alors la solution est une solution pseudo-tampon. Une solution tampon est composée : soit d'un acide faible HA et de son anion A−. Il s'agit par exemple du couple CH3COOH/CH3COO− ; soit d'une base faible B et de son cation BH+ comme le couple NH4+/NH3.
Oxygène 18L'oxygène 18, noté O, est l'isotope de l'oxygène dont le nombre de masse est égal à 18 : son noyau atomique compte et avec un spin 0+ pour une masse atomique de . Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . C'est un isotope stable. L'oxygène naturel en contient 0,205 %. L'oxygène 18 est utilisé en radiopharmacologie sous forme d'eau enrichie en espèces pour produire, par bombardement de protons — ions hydrogène — accélérés dans un cyclotron ou dans un accélérateur linéaire, du , lequel est, par exemple, utilisé sous forme de , noté , dans le cadre de la tomographie par émission de positons.
AcétonitrileL'acétonitrile, ou cyanure de méthyle, est un composé chimique de formule CH3CN. Ce liquide incolore, d'odeur sucrée, est le nitrile organique le plus simple, et très souvent utilisé en tant que solvant. L'acétonitrile est obtenu comme sous-produit de la production de l'acrylonitrile, c'est pourquoi la tendance à la production d'acétonitrile suit généralement celle de l'acrylonitrile. Les plus grands producteurs de cette molécule aux États-Unis sont INEOS, DuPont, J.T. Baker Chemical, et Sterling Chemicals.
Eau lourdeL'eau lourde ou oxyde de deutérium DO (ou HO) est constituée des mêmes éléments chimiques que l'eau ordinaire (ou HO), mais ses atomes d'hydrogène sont des isotopes lourds, du deutérium (le noyau de deutérium comporte un neutron en plus du proton présent dans tout atome d’hydrogène). C'est Gilbert Lewis qui isola le premier échantillon d'eau lourde pure, en 1933. L'eau semi-lourde, ou eau deutérée, est l'oxyde mixte HDO (ou HHO). Dans les océans, les mers et les eaux de surface, elle est bien plus abondante que l'eau lourde.
Water industryThe water industry provides drinking water and wastewater services (including sewage treatment) to residential, commercial, and industrial sectors of the economy. Typically public utilities operate water supply networks. The water industry does not include manufacturers and suppliers of bottled water, which is part of the beverage production and belongs to the food sector. The water industry includes water engineering, operations, water and wastewater plant construction, equipment supply and specialist water treatment chemicals, among others.
Hydrogène vertvignette|upright=1.5|Schéma de production et de consommation d'hydrogène vert (l'éolienne représente la production d'électricité décarbonée). L'hydrogène vert est le dihydrogène produit : au sens large (on parle alors aussi d'hydrogène propre), de manière décarbonée, sans libération significative de gaz à effet de serre (dans ce sens il inclut l'hydrogène jaune, rouge, bleu, turquoise, orange ou blanc) ; au sens restreint, par électrolyse de l'eau, à partir d'une source d'énergie renouvelable, ou d'une source bas carbone (énergie renouvelable ou nucléaire), selon les définitions.
Hard waterHard water is water that has high mineral content (in contrast with "soft water"). Hard water is formed when water percolates through deposits of limestone, chalk or gypsum, which are largely made up of calcium and magnesium carbonates, bicarbonates and sulfates. Hard drinking water may have moderate health benefits. It can pose critical problems in industrial settings, where water hardness is monitored to avoid costly breakdowns in boilers, cooling towers, and other equipment that handles water.