Hydromechanical coupling in CO2 geological injection processes
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
CO2 storage in geological formation, especially in deep aquifers, is considered as a compromising technology to reduce the impact of CO2 on the greenhouse effect. Practically, large-volume of CO2 could be injected at a high rate into a system which consist ...
In many fields of geotechnical engineering, the modelling of interfaces requires special numerical tools. This paper presents the formulation of a 3D fully coupled hydro-mechanical finite element of interface. The element belongs to the zero-thickness fami ...
Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a micro ...
This paper introduces a numerical model developed based upon the arbitrary Lagrangian-Eulerian/finite element scheme to analyze bubble plumes in a periodic domain. A spherical air bubble is immersed into a large pool of quiescent water to act as an unconfi ...
Thermo-mechanical effects are important in geologic carbon storage because CO2 will generally reach the storage formation colder than the rock, inducing thermal stresses. Capillary functions, i.e., retention and relative permeability curves, control the CO ...
Geologic CO2 sequestration is considered to be the most promising technique to reduce the concentration of greenhouse gases in the atmosphere. Among all the storage options, deep saline aquifers have the greatest potential and due to their worldwide occurr ...
This study presents a numerical investigation of the effects of coupled material properties on the caprock stability. A thermo-hydro-mechanical framework is proposed in order to reproduce the physical processes. The results indicate that for a given geomet ...
CO2 sequestration in deep geological formations is considered as a promising technology to reduce the impact of CO2 on the greenhouse effect. Practically, large-volume of CO2 could be injected into a system that consists of a highly porous host reservoir c ...
CO2 storage in deep aquifers, which is considered one of the most viable technologies, is delivering on its promise of limiting the greenhouse effect. Nevertheless, deep aquifers may experience significant deformation and geomechanical instabilities, such ...
The objective of the present paper is to perform an accurate numerical simulation of the high-speed water jet impinging on a Pelton bucket. To reach this goal, the Finite Volume Particle Method (FVPM) is used to discretize the governing equations. FVPM is ...
International Association For Hydraulic Research2014