A particularly difficult challenge in the chemistry of nanomaterials is the detailed structural and chemical analysis of multicomponent nano-objects. This is especially true for the determination of spatially resolved information. In this study, we demonstrate that dynamic nuclear polarization surface-enhanced solid-state NMR spectroscopy (DNP-SENS), which provides selective and enhanced NMR signal collection from the (near) surface regions of a sample, can be used to resolve the core shell structure of a nanoparticle. Li-ion anode materials, monodisperse 10-20 nm large tin nanoparticles covered with a similar to 3 nm thick layer of native oxides, were used in this case study. DNP-SENS selectively enhanced the weak Sn-119 NMR signal of the amorphous surface SnO2 layer. Mossbauer and X-ray absorption spectroscopies identified a subsurface SnO phase and quantified the atomic fractions of both oxides. Finally, temperature-dependent X-ray diffraction measurements were used to probe the metallic beta-Sn core and indicated that even after 8 months of storage at 255 K there are no signs of conversion of the metallic beta-Sn core into a brittle semiconducting alpha-phase, a phase transition which normally occurs in bulk tin at 286 K (13 degrees C). Taken together, these results indicate that Sn/SnOx nanoparticles have core/shelll/shell2 structure of Sn/SnO/SnO2 phases. The study suggests that DNP-SENS experiments can be carried on many types of uniform colloidal nanomaterials containing NMR-active nuclei, in the presence of either hydrophilic (ion-capped surfaces) or hydrophobic (capping ligands with long hydrocarbon chains) surface functionalities.
Majed Chergui, Camila Bacellar Cases Da Silveira, Rebecca Ann Ingle, Luca Longetti, Thomas Roland Barillot, Daniel Hollas, Ludmila Maria Diniz Leroy