Quantitative analysis of backbone dynamics in a crystalline protein from nitrogen-15 spin-lattice relaxation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Nuclear magnetic resonance (NMR) was discovered in the first half of the 20th century. Today, neither analytical chemistry without NMR spectroscopy nor medical diagnostics without magnetic resonance imaging (MRI) could be imagined. A magnetic resonance sig ...
The detection of molecules that can bind to active sites of protein targets and the measurement of their affinities is a promising application of NMR. Nowadays, the screening of drug candidates is routinely done by NMR in pharmaceutical industry. We have p ...
Thurber and Tycko recently described a 'bleaching effect' that occurs in magnetic resonance when solid samples that are doped with paramagnetic agents are subjected to rotation by magic angle spinning (MAS) in a static magnetic field with a rotation period ...
Nuclear Magnetic Resonance (NMR) is one of the most versatile techniques since it enables the characterization of solid, liquid and gaseous systems in a plethora of in-vitro and in-vivo experiments. Despite its multidisciplinary scope, it still suffers fro ...
We report electron spin resonance (ESR) measurements on stage-I potassium intercalated graphite (KC8). Angular dependent measurements show that the spin-lattice relaxation time is longer when the magnetic field is perpendicular to the graphene layer as com ...
The time-window for processing electron spin information (spintronics) in solid-state quantum electronic devices is determined by the spin-lattice and spin-spin relaxation times of electrons. Minimizing the effects of spin-orbit coupling and the local magn ...
The transverse relaxation rates R (2) = 1/T (2) of protons can be determined by spin-echo sequences with multiple refocusing pulses using moderate radio-frequency field strengths and properly chosen inter-pulse delays so as to suppress echo modulations due ...
In numerous biological processes that constitute the base of living organisms, protein function is fundamentally related to internal dynamics occurring on μs-ms time scales that can give rise to chemical exchange contributions to relaxation. In a heteronuc ...
The lattice dynamics of solid He-4 has been explored using pulsed NMR methods to study the motion of He-3 impurities in the temperature range (0.05-0.20 K) where experiments have revealed anomalies attributed to superflow or unexpected viscoelastic propert ...
Understanding the molecular determinants underlying protein function requires the characterization of both structure and dynamics at atomic resolution. Nuclear relaxation rates allow a precise characterization of protein dynamics at the Larmor frequencies ...