Assessment of metabolic fluxes in the mouse brain in vivo using (1)H-[(13)C] NMR spectroscopy at 14.1 Tesla
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Reliable quantification of the macromolecule signals in short echo-time H-1 MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased s ...
Despite obvious improvements in spectral resolution at high magnetic field, the detection of C-13 labeling by H-1-[C-13] NMR spectroscopy remains hampered by spectral overlap, such as in the spectral region of H-1 resonances bound to C3 of glutamate (Glu) ...
Nuclear magnetic resonance (NMR) spectroscopy can be applied in vivo to measure static or dynamic biochemical information, e.g., concentrations of metabolites and metabolic fluxes, using various nuclei such as 1H, 13C, 31P and 15N. The work of this thesis ...
Ultra-short echo-time proton single voxel spectra of rat brain were obtained on a 14.1 T 26 cm horizontal bore system. At this field, the fitted linewidth in the brain tissue of adult rats was about 11 Hz. New, separated resonances ascribed to phosphocholi ...
Due to the small size of the mouse, evaluating its clinical phenotype is sometimes problematic. In contrast, mouse models are readily accessible to post-mortem analyses at any time during the course of a disease and prior to its clinical onset. RNA, protei ...
Localized (13)C NMR spectra were obtained from the rat brain in vivo over a broad spectral range (15-100 ppm) with minimal chemical-shift displacement error (
Proton spectroscopy allows the simultaneous quantification of a high number of metabolite concentrations termed the neurochemical profile. The spin echo full intensity acquired localization (SPECIAL) scheme with an echo time of 2.7 ms was used at 9.4T for ...
An efficient shim system and an optimized localization sequence were used to measure in vivo 1H NMR spectra from cerebral cortex, hippocampus, striatum, and cerebellum of C57BL/6 mice at 9.4 T. The combination of automatic first- and second-order shimming ...
To date, functional 1H NMR spectroscopy has been utilized to report the time courses of few metabolites, primarily lactate. Benefiting from the sensitivity offered by ultra-high magnetic field (7 T), the concentrations of 17 metabolites were measured in th ...
Vitamin C (ascorbate) is well established as an essential nutrient that functions as an antioxidant. Since it is present in the human brain at detectable concentrations, this study was designed to detect and quantify ascorbate in the human brain in vivo us ...