SuperoptimizationSuperoptimization is the process where a compiler automatically finds the optimal sequence for a loop-free sequence of instructions. Real-world compilers generally cannot produce genuinely optimal code, and while most standard compiler optimizations only improve code partly, a superoptimizer's goal is to find the optimal sequence, the canonical form. Superoptimizers can be used to improve conventional optimizers by highlighting missed opportunities so a human can write additional rules.
Analyse amortieEn informatique, l'analyse amortie est une méthode d'évaluation de la complexité temporelle des opérations sur une structure de données. Cette analyse résulte en une classification des algorithmes et conduit à une théorie spécifique de la complexité des algorithmes que l'on appelle complexité amortie. L'analyse amortie consiste essentiellement à majorer le coût cumulé d'une suite d'opérations pour attribuer à chaque opération la moyenne de cette majoration, en prenant en compte le fait que les cas chers surviennent rarement et isolément et compensent les cas bon marché.
Master of PhilosophyLe Master of Philosophy (plus souvent abrégé M.Phil.) est un diplôme universitaire du second cycle sanctionnant un travail de recherche et la rédaction d'une thèse ou mémoire (M.Phil. thesis). Au Royaume-Uni, en Australie et en Nouvelle-Zélande ainsi que dans certains autres pays anglo-saxons, le Master of Philosophy (plus souvent abrégé M.Phil.) désigne un diplôme universitaire du second cycle sanctionnant un travail de recherche et la rédaction d'une thèse ou mémoire (M.Phil. thesis).
Union-findthumb|Partition avec 8 classes (qui sont des singletons) obtenue avec MakeSet(1), ..., MakeSet(8).|255x255px thumb|Partition avec 3 classes disjointes obtenue après Union(1, 2), Union(3, 4), Union(2, 5), Union(1, 6) et Union(2, 8).|255x255px En informatique, union-find est une structure de données qui représente une partition d'un ensemble fini (ou de manière équivalente une relation d'équivalence).
Maximally stable extremal regionsIn computer vision, maximally stable extremal regions (MSER) are used as a method of blob detection in images. This technique was proposed by Matas et al. to find correspondences between image elements from two images with different viewpoints. This method of extracting a comprehensive number of corresponding image elements contributes to the wide-baseline matching, and it has led to better stereo matching and object recognition algorithms. Image is a mapping .