Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
At the Paul Scherrer Institute (PSI), a methodology titled PSI-NUSS is under development for the propagation of nuclear data uncertainties into Criticality Safety Evaluation (CSE) with the Monte Carlo code MCNPX. The primary purpose is to provide a complementary option for the uncertainty assessment related to nuclear data, versus the traditional approach which relies on estimating biases/uncertainties based on validation studies against representative critical benchmark experiments. In the present paper, the PSI-NUSS methodology is applied to quantify nuclear data uncertainties for the OECD/NEA UACSA Exercise Phase I benchmark. One underlying reason is that PSI's CSE methodology developed so far and previously applied for this benchmark was based on using a more conventional approach, involving engineering guesses in order to estimate uncertainties in the calculated effective multiplication factor (k(eff)). Therefore, as the PSI-NUSS methodology aims precisely at integrating a more rigorous treatment of the specific type of uncertainties from nuclear data for CSE, its application to the UACSA is conducted here: nuclear data related uncertainty component is estimated and compared to results obtained by other participants using different codes/libraries and methodologies.
Aude Billard, Farshad Khadivar
Aurelio Muttoni, Alain Nussbaumer, Xhemsi Malja
, , ,