Réseau métallo-organiquevignette|Exemple de MOF avec différents ligands organiques. Les réseaux métallo-organiques (MOF, pour l'anglais metal–organic framework) sont des solides poreux hybrides cristallins constitués d'ions métalliques ou de clusters coordonnés à des ligands organiques pour former des structures en une, deux ou trois dimensions. Les MOF présentent notamment une surface spécifique très élevée du fait de leur structure nanoporeuse. Les MOF sont nommés selon leur lieu de découverte suivi d’un numéro d’incrémentation, par exemple MIL-101 pour Matériaux Institut Lavoisier , ou UiO-66.
Cristalvignette|Cristaux. vignette|Cristaux de sel obtenus par cristallisation lente dans une saumure à température ambiante. Un cristal est un solide dont les constituants (atomes, molécules ou ions) sont assemblés de manière régulière, par opposition au solide amorphe. Par « régulier » on veut généralement dire qu'un même motif est répété à l'identique un grand nombre de fois selon un réseau régulier, la plus petite partie du réseau permettant de recomposer l'empilement étant appelée une « maille ».
Covalent organic frameworkCovalent organic frameworks (COFs) are a class of materials that form two- or three-dimensional structures through reactions between organic precursors resulting in strong, covalent bonds to afford porous, stable, and crystalline materials. COFs emerged as a field from the overarching domain of organic materials as researchers optimized both synthetic control and precursor selection.
Taux de cristallinitéLe concept de taux de cristallinité (en anglais, degree of crystallinity), κ, se rencontre souvent dans le cas des matériaux organiques. Il mesure la proportion de matière se trouvant dans l'état cristallin. Le taux de cristallinité massique (κm) d'un échantillon de polymère cristallisé est défini par le rapport de la masse des phases cristallines à la masse de l'échantillon étudié. On peut de la même manière considérer le taux de cristallinité volumique (κv). Les taux de cristallinité massique et volumique des polymères sont en général peu différents.
Matière amorpheUn matériau amorphe est une substance dans laquelle les atomes ne respectent aucun ordre à moyenne et grande distance (comparée au diamètre moléculaire), ce qui la distingue des composés cristallisés. La condition sur la distance est importante car la structure des matériaux amorphes présente très souvent un ordre à courte distance (quelques diamètres moléculaires). Les verres, les élastomères et les liquides sont des substances amorphes. En géosciences, le terme générique de minéraloïde est utilisé pour désigner la classe de ces matériaux non-cristallins.
État solidevignette|Solide en laiton conçu par Piet Hein prenant la forme d'un superœuf.|alt=Superœuf solide de couleur dorée posé sur une surface indéfinissable. L’état solide est un état de la matière caractérisé par l'absence de liberté entre les molécules ou les ions (métaux par exemple). Les critères macroscopiques de la matière à l'état solide sont : le solide a une forme propre ; le solide a un volume propre. Si un objet solide est ferme, c'est grâce aux liaisons entre les atomes, ions ou molécules composants du solide.
MonocristalUn monocristal ou matériau monocristallin est un matériau solide constitué d'un unique cristal, formé à partir d’un seul germe. À l'opposé, un polycristal ou matériau polycristallin, est constitué lui d'une multitude de petits cristaux de taille et d'orientation variées. De façon exceptionnelle, on peut en trouver dans la nature, pour le béryl, le quartz, le gypse ; ainsi pour ce dernier la mine de Naica (Mexique) comporte des monocristaux de gypse atteignant treize mètres.
Cristal liquideUn cristal liquide est un état de la matière qui combine des propriétés d'un liquide ordinaire et celles d'un solide cristallisé. On exprime son état par le terme de « mésophase » ou « état mésomorphe » (du grec « de forme intermédiaire »). La nature de la mésophase diffère suivant la nature et la structure du mésogène, molécule à l'origine de la mésophase, ainsi que des conditions de température, de pression et de concentration. thumb|Rudolf Virchow.
Physique du solideLa physique du solide est l'étude des propriétés fondamentales des matériaux solides, cristallins – par exemple la plupart des métaux –, ou amorphes – par exemple les verres – en partant autant que possible des propriétés à l'échelle atomique (par exemple la fonction d'onde électronique) pour remonter aux propriétés à l'échelle macroscopique. Bien que celles-ci présentent parfois de fortes réminiscences des propriétés microscopiques (par ex.
Chimie du solideLa chimie du solide, aussi connue sous le nom de chimie des matériaux, désigne l'étude de la synthèse, de la structure et des propriétés de la phase solide des matériaux, particulièrement les solides non moléculaires. En conséquence, cette branche de la chimie recoupe en partie la physique du solide, la minéralogie, la cristallographie, les céramiques, la métallurgie, la thermodynamique, la science des materiaux et l'électronique. À cause de son importance économique, la chimie du solide progresse au rythme des avancées technologiques, lesquelles originent souvent de l'industrie.