Modèles du neurone biologiquevignette|390x390px|Fig. 1. Dendrites, soma et axone myélinisé, avec un flux de signal des entrées aux dendrites aux sorties aux bornes des axones. Le signal est une courte impulsion électrique appelée potentiel d'action ou impulsion. vignette|Figure 2. Évolution du potentiel postsynaptique lors d'une impulsion. L'amplitude et la forme exacte de la tension peut varier selon la technique expérimentale utilisée pour acquérir le signal.
Plasticité synaptiqueLa plasticité synaptique, en neurosciences, désigne la capacité des synapses à moduler, à la suite d'un événement particulier - une augmentation ou une diminution ponctuelle et significative de leur activité - l'efficacité de la transmission du signal électrique d'un neurone à l'autre et à conserver, à plus ou moins long terme, une "trace" de cette modulation. De manière schématique, l'efficacité de la transmission synaptique, voire la synapse elle-même, est maintenue et modulée par l'usage qui en est fait.
Rythme cérébralUn rythme cérébral (appelé aussi activité neuro-électrique) désigne l'oscillation électromagnétique émise par le cerveau des êtres humains, mais également de tout être vivant. Le cortex frontal qui permet la cognition, la logique et le raisonnement est composé de neurones qui sont reliés entre eux par des synapses permettant la neurotransmission. Mesurables en volt et en hertz, ces ondes sont de très faible amplitude : de l'ordre du microvolt (chez l'être humain), elles ne suivent pas toujours une sinusoïde régulière.
Neurone formelthumb|Représentation d'un neurone formel (ou logique). Un neurone formel, parfois appelé neurone de McCulloch-Pitts, est une représentation mathématique et informatique d'un neurone biologique. Le neurone formel possède généralement plusieurs entrées et une sortie qui correspondent respectivement aux dendrites et au cône d'émergence du neurone biologique (point de départ de l'axone). Les actions excitatrices et inhibitrices des synapses sont représentées, la plupart du temps, par des coefficients numériques (les poids synaptiques) associés aux entrées.
Chemical synapseChemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body. At a chemical synapse, one neuron releases neurotransmitter molecules into a small space (the synaptic cleft) that is adjacent to another neuron.
Neuronal ensembleA neuronal ensemble is a population of nervous system cells (or cultured neurons) involved in a particular neural computation. The concept of neuronal ensemble dates back to the work of Charles Sherrington who described the functioning of the CNS as the system of reflex arcs, each composed of interconnected excitatory and inhibitory neurons. In Sherrington's scheme, α-motoneurons are the final common path of a number of neural circuits of different complexity: motoneurons integrate a large number of inputs and send their final output to muscles.
SynaptogenèseLa synaptogenèse est la formation des synapses. Bien qu'elle se produise tout au long de la durée de vie d'une personne saine, une explosion de la formation des synapses se produit au cours du développement précoce du cerveau. On prend pour exemple la mise en place de la jonction neuromusculaire. Tout d'abord, il doit y avoir une reconnaissance par les terminaisons axonales des cellules cibles avec lesquelles la jonction doit se faire.
Réseau de neurones à impulsionsLes réseaux de neurones à impulsions (SNNs : Spiking Neural Networks, en anglais) sont un raffinement des réseaux de neurones artificiels (ANNs : Artificial Neural Networks, en anglais) où l’échange entre neurones repose sur l’intégration des impulsions et la redescente de l’activation, à l’instar des neurones naturels. L’encodage est donc temporel et binaire. Le caractère binaire pose une difficulté de continuité au sens mathématique (cela empêche notamment l’utilisation des techniques de rétropropagation des coefficients - telle que la descente de gradient - utilisées classiquement dans les méthodes d'apprentissage).
Neuronethumb|537x537px|Schéma complet d’un neurone. Un neurone, ou une cellule nerveuse, est une cellule excitable constituant l'unité fonctionnelle de la base du système nerveux. Les neurones assurent la transmission d'un signal bioélectrique appelé influx nerveux. Ils ont deux propriétés physiologiques : l'excitabilité, c'est-à-dire la capacité de répondre aux stimulations et de convertir celles-ci en impulsions nerveuses, et la conductivité, c'est-à-dire la capacité de transmettre les impulsions.
Règle de HebbLa règle de Hebb, théorie de Hebb, postulat de Hebb ou théorie des assemblées de neurones a été établie par Donald Hebb en 1949. Elle est à la fois utilisée comme hypothèse en neurosciences et comme concept dans les réseaux neuronaux en mathématiques. En 1950, un manuscrit de Sigmund Freud datant de 1895 fut publié qui attestait que cette théorie avait déjà été formulée avant Hebb. Cette théorie est souvent résumée par la formule : () C'est une règle d'apprentissage des réseaux de neurones artificiels dans le contexte de l'étude d'assemblées de neurones.