On global regularity for systems of nonlinear wave equations with the null-condition
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This article studies the Cauchy problem for systems of semi-linear wave equations on R3+1 with nonlinear terms satisfying the null conditions. We construct future global-in-time classical solutions with arbitrarily large initial energy. The choice of the l ...
A Koopman decomposition of a complex system leads to a representation in which nonlinear dynamics appear to be linear. The existence of a linear framework with which to analyze nonlinear dynamical systems brings new strategies for prediction and control, w ...
We consider the defocusing nonlinear wave equation ❑u D jujp ⠀1u in R3 ⠂ & UOELIG;0; 1/. We prove that for any initial datum with a scaling-subcritical norm bounded by M0 the equation is globally well-posed for p D 5 C i, where i 2 .0; ...
We analytically derive an amplitude equation for the weakly nonlinear evolution of the linearly most amplified response of a non-normal dynamical system. The development generalizes the method proposed in Ducimetière et al. (J. Fluid Mech., vol. 947, 2022, ...
The evaluation and consideration of the mean flow in wave evolution equations are necessary for the accurate prediction of fluid particle trajectories under wave groups, with relevant implications in several domains, from the transport of pollutants in the ...
Folding of the earth's crust, wrinkling of the skin, rippling of fruits, vegetables and leaves are all examples of natural structures that can have periodic buckling. Periodic buckling is also present in engineering structures such as compressed lattices, ...
Nonlinear wave propagation in solids and material structures provides a physical basis to derive nonlinear canonical equations which govern disparate phenomena such as vortex filaments, plasma waves, and traveling loops. Nonlinear waves in solids however r ...
The present invention discloses a method and its associated apparatus to retrieve the amplitude and, especially, the phase of nonlinear electromagnetic waves. The application field of the present invention is optical imaging. A sample is probed by coherent ...
Periodic buckled beams possess a geometrically nonlinear, load-deformation relationship and intrinsic length scales such that stable, nonlinear waves are possible. Modeling buckled beams as a chain of masses and nonlinear springs which account for transver ...
Parlange and Brutsaert [1987] derived a modified Boussinesq equation to account for the capillary effect on watertable dynamics in unconfined aquifers. Barry et al. [1996] solved this equation subject to a periodic boundary condition. Their solution shows ...