SociologieLa sociologie est une discipline des sciences sociales qui a pour objectif de rechercher des explications et des compréhensions typiquement sociales, et non pas mentales ou biophysiques, à des phénomènes observables. La sociologie étudie les relations sociales qui produisent par exemple, selon les approches : des pratiques, des faits sociaux, des interactions, des identités sociales, des institutions sociales, des organisations, des réseaux, des cultures, des classes sociales, des normes sociales ainsi que de toutes ces entités qui n'ont pas d'explications purement biophysiques ou mentales et qui sont produites par les individus et groupes sociaux.
Problème de l'arbre de SteinerEn algorithmique, le problème de l'arbre de Steiner est un problème d'optimisation combinatoire. Il porte le nom du mathématicien Jakob Steiner. Ce problème est proche du problème de l'arbre couvrant minimal et a des applications en conception de réseaux, notamment les circuits électroniques et les télécommunications. Il existe plusieurs variantes du problème. Dans un espace métrique, étant donné un ensemble de points P, un arbre pour P est un réseau (c'est-à-dire un ensemble de chemins connectés) tel que tous les points soient reliés, et un arbre est dit de Steiner si la longueur totale du réseau est minimale.
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
ReproductibilitéLa reproductibilité d'une expérience scientifique est une des conditions qui permettent d'inclure les observations réalisées durant cette expérience dans le processus d'amélioration perpétuelle des connaissances scientifiques. Cette condition part du principe qu'on ne peut tirer de conclusions que d'un événement bien décrit, qui est apparu plusieurs fois, provoqué par des personnes différentes. Cette condition permet de s'affranchir d'effets aléatoires venant fausser les résultats ainsi que des erreurs de jugement ou des manipulations de la part des scientifiques.
Centralitéthumb|right|300px|Exemples de A) Centralité d'intermédiarité, B) Centralité de proximité, C) Centralité de vecteur propre, D) Centralité de degré, E) Centralité harmonique et F) Centralité de Katz sur le même graphe. En théorie des graphes et en théorie des réseaux, les indicateurs de centralité sont des mesures censées capturer la notion d'importance dans un graphe, en identifiant les sommets les plus significatifs.