We present a new method to encapsulate functional liquids into sealed MEMS capsules by fluidic self-assembly. Self-assembly of 200 mu m SU-8 cargos and picoliter liquid co-encapsulation are driven by the interplay of global fluidic drag and short-range capillary forces. The latter ensues from the localized surface-selective precipitation of a photopolymerizable adhesive onto the capsules' rim. Assembly yield higher than 50% is achieved, and can be improved by optimized agitation and shape matching. The method is massively parallel, scalable and compatible with batch MEMS fabrication. It can address a variety of applications, including distributed MEMS, cell encapsulation and drug delivery.
Francesco Stellacci, Youwei Ma
Pierre Gönczy, Niccolo Banterle
Raffaella Buonsanti, Philippe Benjamin Green, Alexander Nicolas Chen, Victoria Lapointe