Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The evolution toward emerging active distribution networks (ADNs) can be realized via a real-time state estimation (RTSE) application facilitated by the use of phasor measurement units (PMUs). A critical challenge in deploying PMU-based RTSE applications at large scale is the lack of a scalable and flexible communication infrastructure for the timely (i.e., sub-second) delivery of the high volume of synchronized and continuous synchrophasor measurements. We address this challenge by introducing a communication platform called C-DAX based on the information-centric networking (ICN) concept. With a topic-based publish-subscribe engine that decouples data producers and consumers in time and space, C-DAX enables efficient synchrophasor measurement delivery, as well as flexible and scalable (re)configuration of PMU data communication for seamless full observability of power conditions in complex and dynamic scenarios. Based on the derived set of requirements for supporting PMU-based RTSE in ADNs, we design the ICN-based C-DAX communication platform, together with a joint optimized physical network resource provisioning strategy, in order to enable the agile PMU data communications in near real-time. In this paper, C-DAX is validated via a field trial implementation deployed over a sample feeder in a real-distribution network; it is also evaluated through simulation-based experiments using a large set of real medium voltage grid topologies currently operating live in The Netherlands. This is the first work that applies emerging communication paradigms, such as ICN, to smart grids while maintaining the required hard real-time data delivery as demonstrated through field trials at national scale. As such, it aims to become a blueprint for the application of ICN-based general purpose communication platforms to ADNs.
Wenlong Liao, Qi Liu, Zhe Yang