The increased energy demand and the importance to find renewable energy resources have been addressed by a scientific effort to improve the power conversion efficiency of organic solar cells. In particular, polymer-based solar cells have experienced a great increase in power conversion efficiency, which recently reached a value over 10%. The possibility to further improve the performance of polymer-based solar cells has encouraged the research to have a close look at the key parameters, which play an important role in the mechanism of charge generation. Specifically, the photo-physical processes and the time scales involved in converting excitons to charges are still poorly understood. Also, the microscopic origin and the nature of the driving force allowing interfacial electron-hole pairs to become free charges and the role played by the sample microstructure in a bulk heterojunction have to be clarified. We have used transient absorption spectroscopy, which provides information about the excited states dynamics with
Paul Joseph Dyson, Ursula Röthlisberger, Felix Thomas Eickemeyer, Lukas Pfeifer, Virginia Carnevali, Nikolaos Lempesis, Lorenzo Agosta, Masaud Hassan S Almalki, Haizhou Lu, Yeonju Kim, Jaeki Jeong
Michael Graetzel, Shaik Mohammed Zakeeruddin, Felix Thomas Eickemeyer, Peng Wang, Ming Ren