Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
While compressive sensing (CS) has traditionally relied on L2 as an error norm, a broad spectrum of applications has emerged where robust estimators are required. Among those, applications where the sampling process is performed in the presence of impulsive noise, or where the sampling of the high-dimensional sparse signals requires the preservation of a distance different than L2. This article overviews robust sampling and nonlinear reconstruction strategies for sparse signals based on the Cauchy distribution and the Lorentzian norm for the data fidelity. The derived methods outperform existing compressed sensing techniques in impulsive environ- ments, thus offering a robust framework for CS.
Nicolas Henri Bernard Flammarion
Volkan Cevher, Baran Gözcü, Thomas Sanchez